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Abstract

In this paper we consider the problem of estimating the inertial properties of small-size rotorcraft vehicles. The
proposed procedure consists in first subjecting the vehicle to a pendular motion; next, time histories of attitude
and angular velocity are obtained by using an inertial measurement unit attached to the vehicle; finally, estimates
of the inertia tensor components are obtained by using maximum-likelihood constrained optimization in the time
domain. The experimental equipment is extremely simple to realize and of low cost.

An important highlight of the proposed approach is that the inertial properties of the vehicle are estimated
using specific experimental observations which can be conducted in the laboratory prior to performing flight
testing. Hence, flight trials can focus of the sole estimation of the aerodynamic parameters, easing the problem
and improving the quality of the estimates.

The procedure is first tested in a simulated environment, by artificially creating virtual time histories so as to
verify the observability of all parameters. Then, the procedure is validated by using an object of known inertial
characteristics. Finally, the document is concluded with the application of the proposed methodology to a small
rotorcraft vehicle.

1 INTRODUCTION

Mathematical models of aerial vehicles are crucial for
enabling the myriad simulation needs that support the
vehicle design and operation, including the synthesis
of model-based control laws. To ensure the best pos-
sible fidelity of each given model to the plant, suit-
able methods are formulated for extracting best (in a
statistical sense) estimates of the model parameters
from experimental observations. Parameter estima-
tion problems are notoriously difficult to solve, since
the problem is often ill posed, presents multiple local
solutions, is affected by scarce observability of some
parameters, and is corrupted by measurement and
possibly process noise.
In most cases, including for example the rotary wing

class of vehicles, the highest level of uncertainty is in
the aerodynamic components of the model, which de-
scribe complex non-linear physical processes which
profoundly determine the vehicle response character-
istics. Unfortunately, the inertial parameters of the
vehicle also have a strong effect on its dynamics,
and must be known precisely. Being difficult to mea-
sure with accuracy, unless one can weight all vehicle

components and has precise knowledge of their lo-
cation [2, 13], the vehicle inertial quantities are often
estimated together with the aerodynamic parameters
from flight test data, which complicates the estimation
problem by increasing the number of unknowns.
To address these issues, in this paper we present a

method for estimating the inertial properties of small
rotorcraft vehicles using specific experimental obser-
vations which may be conducted in the laboratory
prior to performing flight testing. This way, the param-
eter estimation performed from flight test data can be
limited to the sole estimation of the aerodynamic pa-
rameters, easing the problem and in turn improving
the quality of the estimates.
Several methods for the estimation of the inertial

characteristics of rigid bodies have been presented in
the literature.
In some of the proposed methods the object is con-

strained to rotate about one axis and, by measuring
the frequency of oscillation about the pivot axis, the
value of the moment of inertia around that axis is
determined by solving a least-squares identification
problem [3, 12]. By changing the orientation of the
rotation axis with respect to the object, one can mea-
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sure the various components of the inertia tensor, al-
though this requires a special hardware and multiple
experiments.

Other approaches use special measurement robots
which subject the object to desired motions [7, 11].
Although these approaches can identify all unknown
inertia parameters in a rigid body, the measurement
robots are typically rather complex and expensive ma-
chines.

Yet other methods have been proposed which use
frequency response functions and/or modal analysis
to identify the inertia parameters, often together with
the stiffness and damping characteristics of the mount
elements [1, 5, 6]. The simplest and most effective ar-
rangements are based on suspending the object by
means of one or more cables and making it swing
freely [4, 8, 10]. The recorded time histories of an-
gular velocity, acceleration and attitude of the object
are then numerically processed so as to estimate the
elements of the inertia tensor.

In this paper we present a method based on pen-
dular motions. The object is suspended by using a
spherical mount. Next, the response during a free
pendular motion is measured by a high-accuracy in-
ertial measurement unit (IMU) fixed to the object. Fi-
nally, estimates of the inertial parameters are ob-
tained together with estimates of the aerodynamic co-
efficients experienced by the object in its pendular
motions and of the friction coefficients at the mount-
ing pivot. Since the estimation of these unknowns is a
non-linear parameter estimation problem in the pres-
ence of measurement noise, we use the time-domain
Output Error Method (OEM) [9], which amounts to
a constrained optimization problem of a maximum-
likelihood cost function. The approach deals rigor-
ously with the presence of measurement noise, can
use simultaneously time histories from multiple exper-
iments for improving the quality of the estimates, and
allows one to enforce constraints on the unknown pa-
rameters, for example for ensuring physically mean-
ingful results at convergence. Furthermore, the ex-
perimental hardware is extremely simple and of low
cost, the only significant item being the IMU.

At first, we describe the experimental set-up and we
formulate the proposed approach. Next, we present
simulated experiments performed in order to test the
procedure and verify the observability of the unknown
parameters. Then, we describe tests conducted for
the validation of the procedure using an object of
known inertial characteristics. Finally, we describe an
application of the presented method to a small-size
rotorcraft unmanned aerial vehicle (UAV).

2 INERTIA ESTIMATION PROCEDURE

2.1 Experimental Set-Up

The estimation of the components of the inertia ten-
sor of a rigid body can be performed by subjecting the
object to a pendular motion. Figure 1 shows a small
rotorcraft UAV: a supporting structure is made of a
steel plate with a flared hole in the middle and of four
steel rods; the supporting structure is suspended to a
emisphere, which is in turn connected to a support-
ing frame. If the emisphere is properly lubricated, the
connection works as a spherical joint with small fric-
tion. In the present implementation, this arrangement
allows for roll and pitch oscillations of up to 35 deg of
amplitude, and for 360 deg yawing rotations.

Figure 1: Small rotorcraft UAV with steel rods and
IMU, suspended at a pivot point.

Figure 2: Detail of the pivot.

The compound system, composed by the heli-
copter and the supporting structure, has a known
mass and center of gravity position and can be mod-
eled as a rigid pendulum.
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2.2 Equations of Motion

By suddenly cutting a suspension string holding the
vehicle at rest at a given initial attitude, the system
starts oscillating and its motion can be described by
Euler second law:

(1) JO ω̇ + ω × JO ω = mO,

where ω is the body angular velocity and mO is the
moment of all external forces about the pivot point O.
JO is the inertia tensor of the vehicle and of the sup-
port structure about the same pivot point

(2) JO = JOvehicle + JOstruct ,

where, by the parallel axis theorem, we have

(3) JOvehicle = JG + m
(
(rT

OG rOG)I − (rOG rT
OG)

)
,

JG being the inertia tensor about the vehicle center of
gravity G and rOG the distance vector from point O to
point G.
The experimental arrangement of Fig. 2 can be

modeled as a uniform body hinged at an arbitrary
point, as sketched in Fig. 3. The inertial Earth-fixed
reference frame E of unit vectors (e1, e2, e3) is cen-
tered at the pivot point O, whereas the body-attached
reference frame B of unit vectors (b1, b2, b3) is cen-
tered at G.

Figure 3: Sketch of the body model with reference
frames.

The equations of motion of the rigid body write:

JB

Oω̇B + ωB × JB

O ωB = mB

O,(4a)
ωB = S(q)q̇,(4b)

where the notation (·)B indicates components of a
vector or tensor in frame B, q indicates a set of ro-
tation parameters while S is the parameterization de-
pendent matrix which enables to express the body at-
tached components of the angular velocity in terms of
the time rates of change of the rotation parameters;

furthermore, the components of the inertia tensor are
noted

(5) JB

O =

⎡
⎣

Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

⎤
⎦ .

The moment of the external forces mO includes
weight, aerodynamic forces and friction at the pivot
point, and writes

(6) mO = rOG × w + mOfrict + mOaero ,

where w = mge3 is the weight vector. The sliding
friction moment at the pivot is modeled as

(7) mOfrict = − diag(μk1
, μk1

, μk2
)

ω

‖ω‖
,

with two different friction coefficients μk1
and μk2

, the
former for rotations about the b1 and b2 body axes
and the latter for rotations about b3, which reflect the
physical arrangement of the spherical joint used for
the pivot suspension (see Fig. 2).
The aerodynamic moment mOaero at the pivot point

is due to the aerodynamic force (drag) and associated
moment about the aerodynamic center C, and can be
written as

(8) mOaero =
1

2
ρV 2S(Cml − Cd‖rOC‖)

rOC

‖rOC‖
×

vC

V
,

where ρ is the air density, vC is the velocity vector
at point C and V = ‖vC‖ its speed, S a reference
surface, l a reference length, Cm and Cd the body
moment and drag coefficients, respectively. Since
the two aerodynamic coefficients and the location of
the aerodynamic center can not be identified simulta-
neously from the pendular experiments, a single un-
known aerodynamic parameter is defined as

(9) paero = S(lCm − Cd‖rOC‖);

consequently, assuming that the aerodynamic center
is close to the center of gravity, the speed V of C in
Eq. (8) is approximated with the speed of the center
of gravity G, whose location is known.
The set of non-linear state-space Eqs. (4) for the

parametric model M(p) of the experimental set-up
can be written in the following compact form:

f(ẋ, x, p) = 0,(10)

where the state vector is x
.
= (ωB

T

, qT )T , and
the vector of unknown model parameters is p

.
=

(Ixx, Ixy, Ixz, Iyy, Iyz, Izz , paero, μk1
, μk2

)T .

2.3 Measures

A high-accuracy IMU is used for measuring the re-
sponse of the object during its pendular motion (see
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Figure 4: Crossbow Fiber Optic Vertical GYRO.

Update rate 1−100 Hz
Attitude range (Roll, Pitch) ± 180 deg, ± 90 deg

Resolution < 0.1 deg
Heading range ± 180 deg
Resolution 0.1 deg

Angular velocity range ± 200 deg/s
Resolution < 0.05 deg/s

Acceleration range ± 10 g
Resolution < 1.25 mg

Table 1: Crossbow Fiber Optic Vertical GYRO speci-
fications.

Fig. 1). The system used in this work is depicted in
Fig. 4 and uses a tri-axial gyro, a tri-axial accelerom-
eter and a tri-axial magnetometer; Table 1 shows its
technical specifications.
The estimates of the angular velocity ωIMU and an-

gular position qIMU provided by the IMU are affected
by noise nω and nq, respectively, and are available at
N discrete sampling time instants tk. Hence, a set of
measurement equations can be written as

z(tk) = y(tk) + μ(tk),(11)

where z
.
= (ωT

IMU
, qT

IMU
)T is the measurement vec-

tor, y
.
= (ωB

T

, qT )T = x is the output vector, and
μ

.
= (nT

ω
, nT

q
)T is the measurement noise vector

whose covariance is Rk = E[μkμT
k ], E[·] being the

expected value operator.

2.4 Parameter Estimation

The OEM method [9] for the estimation of the un-
known model parameters in modelM(p) can be writ-
ten as

min
x,y,p

J(z − y),(12a)

s.t.: f(ẋ, x, p) = 0,(12b)
y = h(x),(12c)
g(p) ≤ 0.(12d)

The presence of the measurement noise makes the
problem of a stochastic nature. Hence, the optimiza-
tion cost function J is typically a statistical measure
of the difference between measures z and model out-
puts y. A Maximum Likelihood estimator is obtained
by choosing

(13) J = det(R),

whereR = 1/N
∑N

k=1

(
z(tk)−y(tk)

)(
z(tk)−y(tk)

)T .
Alternatively, a weighted Least Squares estimator is
obtained if

(14) J =
1

2

N∑
k=1

(
z(tk) − y(tk)

)
W

(
z(tk) − y(tk)

)T
,

where W is a weight matrix. This method can be
seen as a particular case of the Maximum Likeli-
hood method for known measurement noise covari-
ance matrix, W = R−1 [9]. Inequality (12d) enforces
possible constraints on the model parameters. Such
constraints ensure that the estimated parameters lie
within acceptable bounds and do not take at conver-
gence values which are non-physical.
The Filter Error Method [9] considers also the pos-

sible presence of a process noise term in Eq. (12b);
this however was not deemed necessary in the
present application, since the experiments are con-
ducted in calm air in the laboratory.

3 APPLICATIONS AND RESULTS

3.1 Simulated Identification

To test the identification procedure we carried out a
number of simulated experiments. This phase is es-
sential for understanding whether the unknown pa-
rameters are observable and to what degree, to eval-
uate the effects of the aerodynamic and joint friction
coefficients, to study the effect of measurement noise
and therefore to determine the required accuracy of
the on-board IMU, and to determine the best practices
and procedures for the conduction of the experimen-
tal observations.
To this end, system (4) was integrated forward in

time from assigned initial conditions and for given re-
alistic values of the parameters of the model and of
the experimental equipment, including measurement
errors. Of the many tests conducted, we report here
only a brief synthesis to illustrate the main conclu-
sions.
Firstly, the aerodynamic contribution to the moment

acting on the body is almost negligible if compared
to the friction contribution, which is reasonable con-
sidering the low speed experienced by the vehicle
during its pendular motions. Furthermore, it was ob-
served that the unknown aerodynamic parameter can
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be eliminated without noticeable effects on the quality
of the estimates of the inertia terms, with a reduc-
tion by one of the number of the problem unknowns.
Typically this is automatically compensated by a slight
overestimate in the value of the converged friction co-
efficients. Figure 5 reports the time histories of the
measures (solid lines) and those produced by the
identified model at convergence (dashed lines), which
show an excellent matching. Figure 6 shows the
convergence history of the inertial parameters, with
whiskers indicating the associated standard deviation
and a horizontal line indicating the exact solution. Fi-
nally, Fig. 7 shows the convergence history of the fric-
tion coefficients: it is evident how the friction coef-
ficient μk1

is slightly overestimated to approximately
include the damping contribution of the aerodynamic
drag.

Figure 5: Time histories of the angular velocity body-
attached components for a simulated identification
experiment. Solid line: IMU-measured response.
Dashed line: computed response for converged es-
timated model.

Figure 6: Progress of inertial parameters with stan-
dard deviations. Horizontal line: exact values.

Secondly, we observe that the estimation of the in-
ertial parameters is unsatisfactory if the distance from
the pivot point to the center of gravity is too large. In
fact, referring to Eq. (3), if the contribution of the iner-
tia tensor about the center of gravity, JG, becomes too
small with respect to the transport contribution, the

Figure 7: Progress of friction parameters with stan-
dard deviations. Horizontal line: exact values.

estimates tend to become inaccurate; with the small-
size UAV object of the present study, an acceptable
limit for this distance is of about 1 m. Figure 8 shows
the response of the identified model performed with
a distance from the pivot point to the body center
of gravity equal to 2 m, which clearly shows a poor
matching indicative of a very imprecise identification.

Figure 8: Simulated identification with large distance
pivot-center of gravity. Solid line: IMU-measured re-
sponse. Dashed line: computed response for con-
verged parameter estimation.

Finally, we notice that it is important to choose a
suitable amplitude for the initial conditions in order to
properly excite the response of the system and guar-
antee a satisfactory level of observability for all pa-
rameters. Tests revealed that, in the present case,
estimates begin to be inaccurate with starting values
for the roll φ and pitch θ angles below 10 ÷ 15 deg.

3.2 Procedure Validation

Before attempting the estimation of the inertial param-
eters of a small-size RUAV, the proposed procedure
was validated with the help of a complex object with
known inertial properties, having weight and dimen-
sions similar to those of the target RUAV. To this end,
we used a steel plate with several holes and added
weights, as shown in Fig. 9. The inertial properties
were obtained by a detailed CAD model of the object,
and by weighting and precisely measuring all compo-
nents, including the IMU.
Figure 10 and 11 show that the estimated time his-

tories for the converged estimated model fit the mea-
sures with reasonable accuracy, which is indicative of
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(a) Balanced plate.

(b) Overall system.

Figure 9: CAD model of the object of known inertial
properties used for the validation of the procedure.

a successful identification.
Figure 12 illustrates an example of the convergence

history of the moments of inertia of the validation ob-
ject. The identified values for these parameters lay
within a ±5% band from the expected CAD-derived
values.
Figure 13 shows the convergence history of the

products of inertia of the plate. We observe that the
terms Ixz and Iyz are identified with lower accuracy
than in the previous case, due to the fact that these
parameters are two orders of magnitude lower than
the diagonal moments of inertia. Notice however that
the initial guesses were set to zero, and that the con-
verged values are of the correct order of magnitude.
Figure 14 illustrates the convergence history of the

friction coefficients of the joint. As their actual value
is unknown, we can only appreciate that they show a
rapid convergence to reasonable values.
These results seem to support the conclusion that

an accurate identification of the inertial properties of
an object with weight and dimensions similar to those
of the plate used for validation, is possible with the

Figure 10: Plate angular velocity body-attached
components. Solid line: IMU-measured response.
Dashed line: computed response for converged pa-
rameter estimation.

Figure 11: Plate Euler angles. Solid line: IMU-
measured response. Dashed line: computed re-
sponse for converged parameter estimation.

procedure and equipment described above.

3.3 Application to a Small-Size RUAV

The RUAV is tested with an empty fuel tank, to avoid
sloshing during the pendular motions. Figure 15
shows the configuration during the experiments, the
supporting structure and the connection to a large
portal used for suspending the whole apparatus. The
experiment was conducted without the rotor blades,
although the figure shows the opposite, since they
will occupy different azimuthal configurations during
flight; their (modest) contribution to the inertia of the
vehicle was estimated by simply weighting them and
measuring the location of their center of gravity along
the span.
We performed several experiments starting from

different initial conditions. For the identification, we
considered all time responses that showed an ade-
quate excitation of the three angular velocities and the
three Euler angles, according to the indications com-
ing from the simulated identification tests. The start-
ing angular velocity was set to zero for each exper-
iment, since the oscillations always started from an
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Figure 12: Progress of moments of inertia with stan-
dard deviations. Horizontal line: “exact” CAD-derived
values. Light band: error bounds.

Figure 13: Progress of products of inertia with stan-
dard deviations. Horizontal line: “exact” CAD-derived
values. Light band: error bounds.

initial condition at rest by cutting a restraining string.
The time histories for the converged estimated

model show a good agreement with the time histories
measured from the pendular tests for all selected ex-
periments, as shown in Fig. 16 and 17. It appears that
the measured time histories present a high-frequency
component of the response, probably due to the elas-
ticity of the supporting structure. Clearly, such com-
ponent of the solution is absent from the identified
model, since it is based on the rigid body assumption.
The numerical values of the identified parameters

are presented in Table 2. Each identified value is
the mean value obtained by several identification runs
starting from different initial guesses for the parame-

Figure 14: Progress of friction coefficients with stan-
dard deviations. Horizontal line: converged values.

(a) Supporting structure.

(b) Helicopter hung to portal.

Figure 15: RUAV configuration for pendulum experi-
ments.

ters, and it is shown together with its standard devi-
ation. Overall, the results indicate that the moments
of inertia Ixx, Iyy and Izz and the friction coefficients
μk1

and μk2
show a good precision, with standard de-

viations within 5−15% of the respective mean values.
Similarly to the validation problem, it appears that the
product of inertia Ixz has a lower degree of precision.
Figure 18 illustrates an example of the convergence

history of the moments of inertia of the helicopter, with
the standard deviations at each iteration shown by us-
ing whiskers. The estimate of Iyy is characterized by
a higher precision than the other inertia parameters,
while the worst precision is associated to the product
of inertia Ixz .
Figure 19 illustrates an example of the convergence

history of the friction coefficients at the suspension
joint. It appears that both estimates are characterized
by a good accuracy.
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Figure 16: RUAV estimation problem, angular ve-
locity body-attached components. Solid line: IMU-
measured response. Dashed line: computed re-
sponse for converged parameter estimation.

Figure 17: RUAV estimation problem, Euler angles.
Solid line: IMU-measured response. Dashed line:
computed response for converged parameter estima-
tion.

4 CONCLUSIONS

In this paper we have presented a method for estimat-
ing the inertia tensor of a small-size rotorcraft vehicle.
It was shown that accurate identification of the inertial
parameters of such a vehicle can be achieved by us-
ing specific experimental observations which may be
conducted in the laboratory, prior to performing the
flight tests necessary for the estimation of its aerody-
namic characteristics. The procedure consists in sub-
jecting the vehicle to a pendular motion, and record-

Id. Parameter Mean Value Standard Dev.
Ixx [kg m2] 0.171 0.019
Iyy [kg m2] 0.898 0.038
Izz [kg m2] 0.932 0.066
Ixz [kg m2] -0.055 0.063
μk1

[Nm] 0.248 0.026
μk2

[Nm] 0.115 0.018

Table 2: Estimated inertial properties of the RUAV and
joint friction coefficients.

Figure 18: Progress of inertial parameters with stan-
dard deviations. Horizontal line: final identified value.
Light band: standard deviation of final identified value.

Figure 19: Progress of parameters with standard de-
viations. Horizontal line: final identified value. Light
band: standard deviation of final identified value.

ing its response. From the measured response, es-
timates of the unknown model parameters are com-
puted using a maximum likelihood time-domain op-
timization, which accounts for the stochastic nature
of the problem due to the presence of measurement
noise.
The results have shown a very satisfactory agree-

ment between measured and computed responses,
which indicates a successful identification of the un-
known inertial parameters and confirms the suitability
of the approach for the present scopes.
We have argued that performing simulated identi-

fication tests from virtual experiments and validating
the procedure with an object of known characteristics,
provides helpful information on the design of the ex-
perimental set-up, on the tuning of the procedure and
on the identification of best practices for conducting
the experiments.
Specific conclusions which have emerged from the

present work can be summarized as follows:

• Aerodynamic forces during pendular motion are
negligible if compared to the friction contribution:
the elimination of the aerodynamic terms from
the model simplifies the identification process
and leads to good agreement between measured
and simulated responses, with a small overesti-
mate of the friction coefficients;

• The distance from the pivot point to the vehicle
center of gravity must be small enough to mini-

35th European Rotorcraft Forum 2009

©DGLR 2009 8



mize the transport contribution to the inertia ten-
sor;

• Suitable amplitudes for the initial attitudes must
be chosen in order to properly excite the system
response and guarantee a satisfactory level of
observability for all parameters;

• The validation of the method with an object with
known inertial properties indicates that the diag-
onal moments of inertia can be identified within a
±5% of accuracy, which was judged sufficient for
the present application;

• The application of the proposed method to a
small-size rotorcraft UAV with unknown inertial
properties lead to estimates of the moments of
inertia and friction parameters with standard de-
viations within 5 ÷ 15% of their respective mean
values.
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