


ABSTRACT 

An unsteady 3-D Panel Method coupled with a lagragian transport of the vortex sheet 
has been applied to compute the subsonic aerodynamics of a multi-blaclecl rotor. 

In this paper the numerical application concerns the four-blaclecl rotor/fuselage 
configuration in forward night studied at the University of Maryland. 

Prediction of time pressure responses on two transducers located on the fuselage (under 
the rotor elise) agrees with Maryland wind tunnel experiments. The time evolution of the 
rotor thrust coefficient shows that its mean value is slightly overpredicted compared to 
Maryland experiments. 

It is worth noting that this method does not entail any input data such as a prescribed 
wake or a spanwise distribution of circulation given from experiments. For this reason the 
method can deal with very complex rotor-fuselage interactions. 

1. Introduction. 

The three-dimensional behaviour of the nowfield around an helicopter is essentially due 
to the vortex sheets issued from rotor blades. A precise understanding of the structures of 
the vortex sheets, of their innuence on rotor performances and of the loads they induce on 
the fuselage will enable to improve the perfonnances and the handling qualities of modern 
helicopters. In hover and in forward flight at moderate advance ratios, the rotor-wake
fuselage interactions are of the greatest importance. 

Wake influences on isolated rotors are actually well understood and modelised. Up to 
now rotor-wake-fuselage interaction was a problem which overtook the frame of available 
numerical methods. In order to make the flow computable simplifying assumptions must 
be made. So, recent works I I I undertaken in this aera neglect compressibility and 
viscosity of the fluid. Thus, surface singularity methods coupled with free wake analysis 
can be succesfully applied. Though these methods are limited with respect to the accuracy 
of aerodynamic phenomena computed they allow a good understanding of interaction 
problems. A code developed at ONERA for computing rotor performances in real flight 
configurations [21 has been updated and used for the rotor-wake-fuselage interaction 
problem. 

The interaction of an isolated rotor with wakes issued from his blades has been 
computed using the integral method develored at ONERA. Results of an isolated rotor in 
hover and in climbing or descending forward flight are presented in references [3[, [4] 
and [5]. 

The unsteady pressure fluctuations on the fuselage resulting from rotor-wake-fuselage 
interaction are evaluated in this paper. In order to minimize the CPU time, rotor blades are 
represented by lifting surfaces leading to a boundary problem of first order (Neumann 
problem [4]). The fuselage is treated with an integral boundary method of second order 
(Dirichlet problem IS[). 

2. Theoretical background. 

In this paper vorticity is cliscretisecl either by a surface repartition of doublets or by 
a volume repartition of vorticity. A theoretical review of these two dicretisations is given 
below. 
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2.1. Surface representation of vorticity . 

It is established in reference [6[ that the velocity potential induced at a point P of the 
flow field by the rotor (surface Sf/), the vortex sheets (surface SN) and by the fuselage 
(surface Sr) is given by : 

(!) 

where 

and 
r = I -r I = I xQ - Xp I . 

4>~ stands for the potential of the unifom1 tlow at infinity. For thick bodies (thick 
blades, fuselage) n' is the unit non11al vector directed towards the flow, for thin bodies 
(lifting surfaces, vortex sheets) n' is directed upward. 

Subscript + or - allows to differenciate the value of a variable on both sides of a 
boundary surface S ( + side n'+ and - side n_). 

Subscripts P and Q designate respectively the variables associated with observation and 
variable points. 

The variables ~ and 0 represent respectively a surface repartition of doublets and 
sources. 

The velocity resulting from the potential (I) is: 

For the approximation "thin blade" (lifting surface) 0=0 on SR . 
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The dynamic equilibrium condition for the vortex sheet (surfaces SN) 

p+-p-=0 

and the unsteady Bernoulli equation yield the transport equation for doublets: 

where 

with 

D f! = 0 
Dt 

D 8 ;-> 
- "' -8 + v,. ·'V , 
Dt t 

is standing for the convective derivative. 

(3a) 

In order to discretise equation (2) it is worthwhile to recall the equivalence between 
a smface repartition of doublets (f!) and vorticity (n'x'Vf!) 171: 

where eN is the boundary of the open surface SN. The right hand side (RHS) is the sum 
of two vortex velocity fields: the field due to the vortex distribution tfX'Vf! on SN and the 
field due to a concentrated VOrtex filament f!CllQ on eN. 

The time evolution of wakes, modelised by a surface repartition of doublets, is 
governed by the transport equation (3a). The RHS of this equation being time independent 
the numerical integration is straightforward. Furthermore, this equation fulfils implicitly 
the Kelvin conservation theorem for the circulation. From a numerical point of view this 
approach raises considerable difficulties as soon as wake distortion is important. For 
example, a wake breaking strategy, not yet implemented in the code, would be necessary 
when the wake is in close proximity of the fuselage. 
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2.2. Volume representation of vorticity . 

Using the volume representation of vorticity, the velocity potential at a point P of the 
flow differs from ( 1) only by the term relative to the vortex sheet SN. 

The relation 

is replaced by : 

where 

-
:_C'-1"::.' :_x:_r_)'--· ..::.0)=--

dvQ 
r(r-e'·Y') 

( 4a ) 

( 4b ) 

is the vortex vector contained in the domain D 0,. The relation (4b) is demonstrated in 
reference [8], C!:>N is called the vortex potential. 

The velocity induced at a point P by the vortex sheet modelised by a surface 
distribution of doublets 

( Sa ) 

becomes, for a volume repartition of vorticity : 

( 5b ) 

The time evolution of the vorticity Cil is governed by the Helmholtz equation : 

DW . ot - = (oJ 'i?) \ Dt . ' ( 3b ) 

which is obtained by taking the curl of the Euler equations. Unlike in 2-D flow the RHS 
of (3b) (deformation term) is different from zero and is space and time dependent. As it 
was mentioned for the surface modelisation of vorticity (3a), this equation also implicitly 
fulfils the Kelvin conservation theorem of the circulation (the flux of Cil vector being 
constant through a vortex tube). 

Using the scalar equation (3a) the Rl-IS of which is zero is less expensive than using 
the vectorial equation (3b) with a time dependent RHS. That raises the question : in what 
circonstances is it preferable to use (3b) than (3a) '! 
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A jointive set of doublet panels is used for the discretisation of (3a) whereas a set of 
independent vortex particles is used for (3b). Hence, from a numerical point of view, the 
time evolution of vorticity computed from (3b) is more flexible than (3a) in the cases 
where the wake distortion is too important. Unlike for doublet panels, no wake breaking 
strategies are needed when the wake impinges the fuselage. In paragraph 3 both 
modelisations have been applied to the rotor-wake-fuselage interaction in forward flight. 

2.3. Boundary value problem 

• Point P located on one of the blades 

It is recalled that blades are represented by lifting swfaces. Thus a condition 
concerning the normal velocity component is imposed on surfaces SR (Neumann boundary 
condition). Relation (2) gives : 

• Point P located on the fuselage 

A boundary condition concerning the potential on the inner face, Sr _, of the fuselage 
(Dirichlet boundary condition) is imposed. Relation (I) gives: 

( 6b ) 

Integral relations (6a) and (6b) are written in a galilean frame in order to ensure the 
existence of a velocity potential. The discretisation of (6a) and (6b) gives two linear 
systems described in detail in /91. In the RHS of (6a) Vp ,V =•VN are respectively the 
velocity at point P, the free stream velocity and the velocity induced by the vortex domain 
(wake), in the RHS of (6b) <Pp, <P=, <PN are the corresponding velocity potentials (<PN 
results from (4b) see 18J). In our problem, a convenient simplification of equations (6a) 
and (6b) is to take 

and 

In (6a) and (6b) the velocity VN and the velocity potential <PN are updated, the other 
terms take into account the boundary conditions. Calculations are performed using a 
relative frame moving with the rotor. The relation between the relative velocity V,. at point 
P, the absolute velocity ~~ and the driving velocity of the relative frame Ve is given by : 
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with 

( v "' ,., \ e = \ 11 + ~l X R, 

where Q is the rotor instantaneous rotational velocity and it =OP, 0 being the center of 
rotation on the rotor. V0 is the forward night velocity. 

In the rotor attached frame the relative velocity of any point P on the blades is tangent 
to the blade surfaces sll: 

v ·it=() r , 

which is reported into (6a). 

For the inner potential at a point P located on the fuselage (surface Sp_) there are 
two possibilities. 

First, one may impose: 

<l>p= (). 

In this case it has been shown in 171 that the slip condition on fuselage gives the 
surface distribution of sources: 

a=-n'V () 

in (6a) and (6b). 

The Fredholm equation of second kind (6b) gives the unknown surface density 
distribution of doublets fl. Then the partial derivative of the outer potential <P+ (on the 
fuselage) can be related to the solution 11 

8cl>+ = 8,u 
8t 8t . 

It has been demonstrated in 161 that the equation (2) for the absolute velocity written on 
the fuselage reduces to: 

From definitions of partial derivative of potential, driving velocity Ve and relative 
velocity V, the pressure coefficient on Sr is defined as : 

C --7 
f1 - ~ 

8<P., -~ 2 v 2 &+\, -\, 
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Second, one may impose: 

In this case the source density on the fuselage is : 

and the partial time derivatives of potential cp+ on the fuselage 

8$ + 8)1 8c!>N 
--=-+--

8t 8t 8t 

Now (see [7]) the absolute velocity V:, may be related to the density of doublet ).!, of 
source 0 and to the vortex velocity VN as follows: 

3. Rotor-wake-fuselage interaction in forward flight. 

The numerical results presented herein show that the integral method is of a great 
versability for computing very complex tlows such as the rotor-wake-fuselage interaction. 
The configuration studied here is that of reference[!!. The general arangement of the rotor 
and fuselage is shown on figure 1. The geometric characteristics of the rotor and flight 
parameters are reponed bellow. 

3.1. Rotor geometry and flight parameters. 

number of blades : 4 
Blade chord c: 0.0635 m 
Rotor radius R : 0.1\255 m 
blade root R 0 : 0.2060 m 
blade profile : unsymmetric 0A209 
blade taper ratio : I 
rotor solidity 0 : 0.097941 
blade linear twist : -!2° 
Mach number at the tip of the blade : 0.472 
shaft tilt angle aQ : -6. 0 

advance ratio )l : 0.100 
collective pitch angle eo : 9.039° 
cyclic pitch angle ec: -5.412° 

es: 0.152° 
cyclic flapping angle ~0 : 3.00° 

~c: 0. 0 

~·': o.o 
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The cyclic pitching and tlapping laws via azimuth are : 

8 = 811 + 8, cos (\V) + e, sin (\V) , 

~ = f)o + ~" cos (\j!) + ~~ sin (\V) . 

3.2. Numerical results. 

In reference [1] it has been shown that the signature of the pressure on the 
fuselage is strongly affected by the passage of the blades and by the vortex sheets issued 
from the rotor. The passage of the blades produces a pulse which varies in phase whereas 
the vortex sheet interaction is characterised by a non phased response with respect to the 
blade azimuth. 

In the present paper we do not take into account the direct wake impingement and 
downstream wake impingement effects (mentioned in [II) on the pressure. 

From 0. Rand II 0 I only the blade passage phenomenon can be realistically modelised 
by means of an uncompressible and invicicl fluid theory such as the unsteady 3-D Panel 
Method presented here. 

The time pressure evolution CP" will be computed about its mean value on the 
fuselage at locations 1 and 5 (see tig. 2). The point 1 is located on the body nose where 
the vortex sheet deformation (tearing) effect will be of less importance than the blade 
passage effects. On the contrary, the pressure response at the point 5, located on the rear 
part of the fuselage, will be affected either by the vortex sheets and the blade passage. 

The modelisation of the wake has been made by using either a surface repartition of 
doublets (results a) or a volume repartition of vorticity (results b). For the first case 
(results a) the boundary condition on the inner part of the fuselage is <f>_F = <f>r and for 
the second case (results b) this condition is <l)_r = 0. 

On figures 3 and 4 the pressure signature at points I and 5 obtained from Maryland 
experiment [!] is compared with results a. Figure 3 shows that the pressure response at 
point I is smooth and agrees quite well with Maryland experiment, the peak pressures are 
slightly underpredicted but the phase is cotTectly evaluated. It is worth noting that the 
helicopter (fuselage and rotor) is impulsively started from rest and that the flow reaches its 
established periodic state nearly one rotor turn later. On figure 4, the pressure agrees very 
well with the experiment. During the first turn of the rotor the flow is setting up. From 
azimuth 300 to 600 degrees the periodic state compares well with experiments. The 
oscillations appearing after this azimuth are due to numerical difficulties as the vortex sheet 
modelising the wake comes too close to the fuselage. As is pointed out in [11], this 
drawback, inherent to the surface doublet representation of the wake, can be overcome by 
stretching and even by artificially breaking the wake in the vicinity of the fuselage. 
Nevertheless in the present results (results a) no particular treatment has been applied. 
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Figures 5 and 6 compare unsteady pressure coefficients measured at points 1 and 5 
with the numerical results obtained by a volume repartition of vorticity (results b) for the 
second turn of the rotor. Agreement in amplitude and in phase are satisfactory. We notice 
that the curves are less smooth than for results a. The irregularities observed are due to 
the vortex-point discretisation of the wake (particles). The cut-off function applied on the 
induction law for each particle cannot smooth entirely the pressure response at points too 
close to a particle. 

These results show the great versability of the vortex-point discretisation of the 
wake when it is strongly streched or broken by an obstacle (fuselage). Indeed the 
induction law (Biot and Savart) does not take into account the relative position of the 
particles from each other. Thus, no breaking strategy is needed when the wake passes close 
to the fuselage. Even after the second turn of the rotor the pressure response can be 
computed and is in good agreement with the experiment. 

The figure 7 shows the time evolution of the thrust coefficient. After one turn of the 
rotor the periodic state is reached. Its overprediction is due to a lower blade linear twist 
(-12 ° instead of -13 ° in the experiment) and to some geometric modification in the 
vicinity of the blade root. 

The wake (surface-doublet modelisation) issued from the blade located over the rear 
part of the fuselage is represented on figure 8. This picture gives a hint of the breaking 
strategy which should be adopted in future work. 

The CPU cost is 4620 seconds for the first turn of the rotor on a CRA Y-YMP 
(6 x 60 = 360 vortex particles have been created). For the second turn the CPU time is 
9720 seconds. 

4. Conclusion 

The present results show that the boundary integral method used here is well suited to 
predict correctly the blade passage effects. The numerical treatment of the interaction of 
vortex-sheets with the fuselage which is far from being straightforward is underway by 
solving a type 2 Fredholm integral equation for the total pressure [12]. 

References . 

[ 1 ] G.L. Crouse , J.G. Leishman , N. Bi 
Theoretical and experimental study of unsteady rotor/body aerodynamic interactions. 
46th Annual Forum of the American Helicopter Society , Washinton D.C. , 
Mayl990. 

l 2 ] B. Cantaloube 
Numerical calculation of rotor performances in real flight configurations. 
International Conference on Rotor Basic Research , Research Triangle Park , 
North Carolina , February 1985 . 

17-09 



[ 3 ] C. Rehbach 
Ca1cu1 cl'un rotor d'he1icoptere en vol stationnaire par une methode integrale . 
Note Technique ONERA no. 23/1737 AN -Novembre 1991 . 

[ 4 ] C. Rehbach 
Calcul cl'un rotor d'helicoptere en vol d'avancement par une methode integrale. 
Note Technique ONERA no. 24/1737 AN -Juillet 1992 . 

[ 5 ] C. Rehbach 
Calcul d'un rotor d'helicoptere en vol de descente par des methodes integrales. 
Rapport de Synthese Final ONERA no. 25/1737 A Y -Avril 1993 . 

[ 6 ] B. Hunt 
The mathematical basis and numerical principles of the boundary integral 
method for incompressible potential ftow over 3-D aerodynamic configurations 
Numerical Methods in Applied Fluid Dynamics. Edited by B. Hunt. 
Academic Press. London. 1980. 

[ 7 ] J.L. Hess 
Calculation of potential t1ow about arbitrary three-dimensional lifting bodies . 
Report No. MDC - J0545 , December 1969 . 

I 8 ] J.-P. Guiraud 
Potentiel des vitesses creees par une distribution localisee de tourbillons . 
La Recherche Aerospatiale , no.1978-6 , Novembre - Decembre . 

[ 9 ] B. Cantaloube , S. Huberson 
Calcul d'ecoulements de ftuide incompressible non visqueux autour de 
voilures tournantes par une methode particulaire . 
La Recherche Aerospatiale , no.l984-6 , Novembre - Decembre . 

10 [ 0. Rand 
The influence of interactional aerodynamics in rotor/fuselage coupled response . 
Proceedings of the 2th International Conference on Rotorcraft Basic Research , 
College Park , MD , 1988 . 

[ 11 l D.R. Clark , B. Maskew 
A re-examination of the aerodynamics of hovering rotors-including the presence 
of the fuselage . 
International Technical Specialist's Meeting on Rotorcraft Basic Research , 
Atlanta , GA , March 1991 

12 ] B. Cantaloube , C. Rchbach 
Computation of the pressure in an incompressible rotational f'low of inviscid 
f'luid. 
La Recherche Aerospatiale, no.19XS-2. 

17-10 



14-------165.1 an----~ 

25. 

~----------1~.3an------------~ 

Fig.l Rotor-fuselage arrangement 

Rotor axis 

i 
I 

I 
x Pressure sensor 

I 
I 

5 
6 7 8 9 10 

2~.~ em 
_!. 

I 
I 

19X2Q X17.18-
l 

--,' - -15,16 x-13.1L x- x 11.12 ----:T-
1 

I I 

21' I 
Rings of static pressure taps 

odd 111.13-~1 0 w~l12." -201 

Fig. 2 Position of pressure sensors 

17-11 



CP I 0 1 
! 

I 

I 
' 

Maryland experiment ).1=0.1, CT /cr=0.091 
ONERA Results 

. ' 
* 
* '* ·, 

~ * \* * I' 
0. 511-J\\ ----Hi+---~+:·.+1-~*Cf+-+-++--+f.t,l-----i*i-, .. i-1 ---Hi-. --+-1 

\ 
~ ~ I * . * ** * 

. I ~.· · .. 
*:\o:, -;.- 1 * * if 'T * 

\ 
' * 'I * 

.I '"" .. .. * 
'¥" ~-

~ * ! 0 0 1- \---c---- ----+---t+--+---1~- - t---.i+--f--~-+--+---++--~-----

1 \\1 i I) ·.; \ u ,, d . ~ \-1 ~ \,; Azimuth 
_______ :_ _ _______ [ _________ L _______ L_ ________ j_____ _ _I 

I 00. 200. 300. 400. 500 600. 700. 

Fig.3 Unsteady pressure response (sensor 1) 

17-12 



Maryland experiment f.i=O.l, CT /cr=0.091 
ONERA Results 

10.0 rCP 

7 5 

5.0 

2.5 

. 2. 5 -··--···-· !-······-·--·-·t- ····----~· -··· 
' 
' 

i 

..... ·~-·----··· --·····-~··- '--··--·----····· L ---····· ---'-··--·-···· ...... .L ·--····------L ..... 
100 200. 300 400. 500. fiOO. 

Fig. 4 Unsteady pressure response (sensor 5) 

17-13 

Azimull 

'100 



1.0 CP 

0 5 ~ 

0.0-

-0 5 ~ 
v 

I 

i 

Maryland experiment 11=0.1, CT /cr=0.091 
ONERA Results (TPI) 

I 

' ~· 

t I~ A ~~~: 
,, 

' ' 
·" 

I 

* 
··.i(c '· 

* 
~ 

~ .;;.:; 
". 

~ ~v 
.. '• 

~ " '• * 
" * : 

, . • . . ' 
~ <,:) 

. ' ' . . '.1 . . . , * 
• ':i< :. 

* 
I 

•' 

•' I .. 
I :: 

l ______ ~ ______ _ui*L_ ____ _L _____ ~ 

450 550 650. 750. 

J l 

v v 

Fig. 5 Unsteady pressure response (sensor 1) 

17-14 

I I ' I 

v 
I Az1muth 



, I 

7.5 

5.0 

Marylnnd experiment )l=O.l, CT lo-=0.091 
ONERA Results (TPI) 

2 5 ' 

\ r ~~ A I ~~ I A ;1\ .1 1 
\ ' I I ~· I /* ~ • I l, t* I ,, I I \ I 
I I I . ,\ ;;, \., i I f' I : \ f I , 1 

o · o \_j 1 \: ~~· 'lJ \~: 1: \;::v V; \J I \_; l 
I _,.,. I·· '4'¥' w I I . "' *~ ' 
l ~ l I ' I 

-2.5 ·-~~+---, --:----·--1 l 
' j 

Azimuth 
L-----~--·-~-----~----~---··--~L--·---~--------~ 

450 550 650. 750. t\50. H50. 1050. 

Fig. 6 Unsteady pressure response (sensor 5) 

17-15 



Maryland experiment CT /0"=0.09! 
ONERA Results 

X-·-X3 
ONERA Results 

CT (ONERA) 
CT /cr=O.ll7 (averaged) 

0. 14 

0.13 

0.12 
----·~:-- --~--~~--.----~·· --.. ------....... ..,.-._ 

0. II 

0.10 

0.09 

0.06 

0.07 

0.06 

0 05 

0.04 

_ ! ___ ~--· .. l. ..... l _ ~--~ I ....•... I __ 

I 00. 200. :100 400. 500. 600. '700. ROO 

Fig. 7 Rotor thrust coefficient vs azimuth 

17-16 

Azimuth 



Fig. 8 Calculated wake issued from the rear blade 
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