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Abstract 

Articulated and soft-inplane hingeless rotor heli
copters are susceptible to certain self-excited insta
bilities called ground and air resonance. These in
stabilities derive from the coupling of rotor and body 
degrees of freedom and are well known for a long time. 
In general there is a good basic understanding how to 
avoid these instabilities. But since it became more and 
more desirable to focus rotor design on aerodynamic 
features and flight performance these aeromechanical 
instabilities gain new importance due to the difficul
ties to provide the required damping. On the other 
hand active control offers the possibility for an artifi
cial stabilization of ground and air resonance. Mean
while many modern helicopters are fitted with stabi
lization systems to improve handling qualities and it 
has been discussed already to use these active means 
to overcome mechanical instabilities. 

A fully spatial model is used including dynamic inflow 
as well as flap-lag-coupling. The coupled set of non
linear differential equations is included in a numerical 
simulation computer code and after an analytical lin
earization in a stability computation routine. 

The main emphasis of this paper is to demonstrate the 
potential of active control. The matrices of the state 
space representation are used for optimizing feedback 
gains. However, this method is problematic fortran
sient from ground to air due to the rapid change of 
system characteristics. Numerical simulation results 
will demonstrate the transient behavior. 

Notations and Abbreviations 

a m blade hinge offset or lever 

d kgjs damping constant of simplified model 

d( Nms lead-lag damping constant 
D damping ratio 

F N rotor thrust, force 

Gxi feedback gain for state variable x, 
h m offset of rotor hub from e.g. 
I kgm2 moment of inertia 

k Njm spring constant of simplified model 

k~,k, Nm flap-, lag-spring constants 

m kg body mass 

p,q,r radjs body rates 

Q N shear force for simplified model 

u, v, w mjs body velocities 

Wi mjs induced velocity 

x,y,z m coordinates 

/3 0 flap angle 

e m small parameter 

( 0 lead-lag angle 

'19 0 blade pitch angle 

'P 
0 feedback phase 

(j 
0 real part of eigen value 

<P,e,w 0 EULER angles 

1/J 0 blade azimut angle 

n radjs rotor rotational speed, 
forcing frequency 

w, wo radjs eigen frequency 

0, d collective, differential 

c, s cyclic sine and cosine 

crit, nom critical, nominal 

1, r left, right 

lin, nl linear, nonlinear 

prog, reg progressing, regressing 

() amplitude 

() =a( )fat 

1 Introduction 

Since the introduction of hingeless rotor helicopter 

by MBB in the sixties much R&D effort has focused 
on these rotor types. As a consequent development 
of hingeless rotors bearingless rotors will enter heli-
copter service (EC 135, MDX Explorer). The main 
advantages of such rotor systems compared to artie-
ulated rotors are mechanical simplification, reduced 
drag, weight, parts and maintenance costs, higher mo-
ment capability, determined by the flapping stiffness, 
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and faster moment setup due to cyclic control inputs 
and therefore better handling qualities [6]. There are 
two suc.aessfully flown hingeless rotor concepts .. The 
Boelkow-System makes use of elastic coupling effects, 
the other {WG 13) prevents these couplings. Impor
tant parameters in designing hingelessjbearingless ro
tors arc blade flapping and lagging frequencies. Both 
rotor systems can be divided into two distinct groups 
depending on the inplane frequency: soft-inplane ro
tors with w, jf! < 1 and stiff-in plane rotors w, jf! > 1. 

Low in plane rotor loads can only be achieved by using 
soft-inplane rotors. As a consequence of this mod
ern hingelessjbearingless rotors are designed as soft
inplane, but are susceptible to ground and air reso

·nance. To prevent these instabilities sufficient lead
lag damping has to be provided. This can be done 
either by adding dampers or by using structural damp
ing and damping from aeroelastic couplings or by Ac
tive Control Technology {ACT). The introduction of 
Fly-by-Wire technology and digital control systems 
of future helicopter generations offers a broad range 
of different ACT concepts. 

The enormous control power inherent in hinge
less /bearingless rotor concepts makes feedback con
trol an effective means of augmenting system stability. 
With this in mind several authors examined the pos
sibilities of suppressing ground and air resonance by 
ACT using a conventional swash plate. Early work was 
done by YOUNG et al. [12]. The instable ground reso
nance mode was found out to be a roll mode. Feedback 
of roll attitude and roll rate was effective in suppress
ing a growing instability. The same turned out for 
air resonance in hover. A more detailed study was 
made by STRAUB and WARMBRODT [5]. The ana
lytical model used was a hingeless rotor system with 
body pitch and roll as well as body longitudinal and 
lateral translation. The rotor blades were assumed 
to be rigid rotating against spring and damper re
straints about a common flap-lag-hinge. Flap-lag
coupling was included but no dynamic inflow. Dy
namic inflow is mentioned to be an important mod
elling aspect for stability and control investigations 
[3]. The regressing lag mode was denoted to be
come instable. Several feedback loops were investi
gated including cyclic flap and lead-lag, body pitch 
and roll states. Two mechanisms were mentioned 
to stabilize ground resonance: first, controlling body 
pitch and roll through flapping moments, secondly, 
augmenting lead-lag damping through Coriolis cou
pling with blade flapping. Since the model showed 
only one mild instability (<T = 0.145/s) stability could 
be achieved throughout the considered range of rotor 

rotational speed with appropriate chosen gains and 
phases. Scheduling feedback phase was found out to 
maximize damping augmentation. 
In a second paper STRAUB [16] used the same mathe
matical model to study linear optimal control. This 
time he examined a four bladed articulated rotor heli
copter. The optimal gains were obtained from the so
lution of RICATTI equation. Several suboptimal con
trollers were tested. They were achieved by removing 
the feedback loops of the optimal controller step by 
step. Chasing appropriate feedback signals resulted 
in sufficient lead-lag damping of the closed loop sys
tem throughout the considered rotor speed range. 
Finally REICHERT and ARNOLD [8] picked up the idea 
of controlling ground resonance through a conven
tional swashplate and compared these results with an 
Individual Blade Control (IBC) approach. They used 
a spatial helicopter model including all six body DOF. 
The four bladed hingeless rotor was modelled similar 
to [5]. Dynamic inflow was again neglected. The IBC 
principle (lag damping augmentation through feed
back of lead-lag states in the rotating frame and con
trolling lead-lag through Coriolis forces) resulted in 
poor aeromechanical stability for the instable pitch 
mode compared to body pitch feedback results. 
TAKAHASHI and FRIEDMANN [10] studied active con
trol of air resonance applying linear quadratic optimal 
control theory. A comparison of full state feedback 
was made to partial state feedback. Feedback of only 
body states resulted in poor lead-lag damping and in 
a destabilization of the progressing lead-lag mode. 

None of these authors considered the transient behav
ior from ground to air at high thrust levels. YOUNG 
et al. [12] marked this area in their figures with a 
"visual remainder" at Fjmg = 90%. ORMISTON de
termined ground and air resonance characteristics of 
a hingeless rotor helicopter. He compared the modes 
that participate in air resonance phenomenon to the 
more familar modes of ground resonance. He reduced 
body frequencies due to lowering landing gear stiff
ness and examined thus take-off condition, still using 
a linear model. Capturing transition affords the mod
elling of a nonlinear landing gear. The landing gear 
represented by a spring/ damper system cannot trans
mit tension from the fuselage to the ground. Due to 
this the landing gear may lose partially ground con
tact during transition. 

The aim of this paper is first to include such a nonlin
ear landing gear model and to compare the helicopter 
behavior to a model with a linear landing gear. Sec
ondly, the use of ACT to prevent ground resonance 
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and its consquences to the helicopter in hover should 
be further studied. 

.. 
2 Mathematical Model 

The mathematical model used in this study is simi
lar to those of ref. [8]. The spatial helicopter model is 
shown in fig. 1 and includes all six body DOF. The ro
tor hub is located directly above the fuselage e.g. The 
blades are assumed to be rigid undergoing flapping 
and lagging motion rotating against linear spring and 
damper restraints. Lead-lag and flap motion have the 
same virtual hinge in common with a distinct offset 
a from the rotor center. Structural flap-lag coupling, 
precone and linear twist can be included. Aerody
namic rotor blade forces and moments are based on 
a linear two-dimensional blade element theory. Fuse
lage aerodynamics are included in the form of a linear 
derivative approach. Tail rotor dynamics are not in
cluded. 
In addition to ref. [8] low frequency unsteady aerody
namics (dynamic inflow) are included. This is men
tioned to be an important modelling aspect in litera
ture [3, 7, 9, 10]. However, blade torsion is neglected. 
The landing gear is modelled in two different man
ners. The linear approach is realized by a system 
of linear springs and viscoelastic dampers at each of 
the four landing gear levers pointing in all three direc
tions and with distinct offsets from the fuselage e.g. 
The nonlinear approach is modelled by a system of 
springs and dampers at each of the four landing gear 
levers, too, but no tension can be transmitted from 
the fuselage to the ground. The modelling will be 
described in detail later on. With this, transient be
havior can be studied. For clearness: a conventional 
linearization and eigen value analysis cannot be per
formed. An analysis can only be performed by inte
grating the differential equations numerically. 

All differential equations were derived by using the 
symbolic manipulation programs DERIVE and RE
DUCE, considering all geometric nonlinearities. These 
equations were included in a time integration routine 
to compute the time history results used later on. To 
simplify designations the two models with the two 
different landing gear descriptions are refered as the 
linear model and the nonlinear model respectively 
depending upon the landing gear modelling. A lin
earization was made for the helicoper model with the 
linear landing gear system, using the same tools. No 
ordering scheme was used, so all terms are retained 
in the analysis. A multiblade transformation was per-

formed. For a four bladed helicopter this is done by 

!3k = !3o+f3ccos'l/Jk+f3ssin'l/!k+!3d, (1) 

(k (o + (c cos'l/Jk + (s sin'l/Jk +(d. (2) 

Assuming all blades identical and restricting the anal
ysis to hover condition this results in 14 second order 
(body/rotor) and three first order (inflow) differen
tial equations with constant coefficients. After a state 
space transformation one gets 31 first order differential 
equations with constant coefficients in matrix form: 

(3) 

with the states i!2 = [~o,dc,t3s,~d,!3o,f3c,f3s,f3d,(,o, 
(~, (~, (d, Co, (c, (s, (d, Uks, Vks, Wks, X, y, z, Ps, Qs, rs, 

~1 6, 'li, Wi0 1 WiG, WiS}T and three control inputS !f = 
[t?o,t?c,t?s]r. 
The data used in this study correspond to a four 
bladed soft inplane helicopter somewhat similar to the 
ECD Bo 105 with a high landing gear. REICHERT 
and ARNOLD [8] have done their studies for the same 
helicopter, but with a conventional landing gear, re
sulting in a higher stiffness and therefore in higher 
body frequencies. They mentioned the coupled trans
latory/rotatory modes to be wx;e = 20.7radjs and 
WxfiJ> = 23.9rad/ s, resulting in coupling with lead-lag 
motion at rotor speeds far beyond the nominal speed. 
For the Bo 105 helicopter with the high landing gear 
it is known that a critical rotor speed occurs below 
the nominal value, see fig. 2. This seems to be a more 
interesting case, since the rotor has to pass this criti
cal rotor speed, bringing rotor to nominal speed. The 
data of the nominal configuration are listed below. 

Fusela!je Data Rotor Data 
m = 1906 kg On om = 44.5 1/s 
Iu = 1515 kgm2 R = 4.91 m 
Iyy 4863 kgm2 mb1 = 23.4 kg 
I., 3869 kgm2 a = 0.76 m 

fxz = 640 kgm2 t?tw = -1.6 '/m 

Wxje = 12.2 1/s !3., = 2.5 ' 
W;r,f~ 17.8 1/s WfJ = 1.12 1/s 

Dx;e 5.6 % w, = 0.67 1/s 

DxjiJ> = 4.6 % d{J = 0 Nms 

d, = 60 Nms 
h = 1.5 m 

Table 1: Data of Nominal Configuration 

The low body frequencies result in a coalescense of 
regressing lead-lag with the body x/8-mode at n = 
91%nnom and with yjif>-mode at n = 112%nnom· 
The lead-lag damping was chosen from fig. 3. This 
figure shows the damping ratio De versus the lead-
lag damping constant d, of the isolated lead-lag rna-

64-3 



tion in the rotating system and the regressing lead
lag mode in the body fixed system for zero thrust and 
mediUIT\•thrust at n = 91% 0nom· The chosen value 
d, = 60 Nms provides about 1% of critical damping 
for the isolated lead-lag motion which is not sufficient 
to avoid a ground resonance instability for the coupled 
system even at low thrust (low collective pitch). 

Taking the data from tab. 1 an eigen value calcula
tion for the helicopter on ground was performed vari
ing the rotor speed from 0% to 140%0nom at zero 
thrust. Real and imaginary parts of the eigen values 
are shown in fig. 4. The eigen modes were identified at 
nominal rotor speed. The 31 states result in 15 com
plex conjugated values and one real eigen value. The 
figure clearly shows the curve for the regressing lead
lag motion of a soft in plane hingeless rotor helicopter 
whereas the curve for the progressing lead-lag mode is 
not fully visible. The single body modes convert into 
progressing lead-lag and afterwards back into the next 
higher body frequency. The collective lead-lag mode 
couples with body yawing motion. Furthermore, the 
figure shows low frequency eigen modes for regress
ing flap and dynamic inflow as denoted by JOHNSON 

[2]. Both modes are highly coupled. Another coupling 
of rotor and body modes exists between body verti
cal translation with collective flap. The relatively low 
eigen frequencies of body xI 0 and y I iJ! modes result 
in a coalescense of the regressing lead-lag eigen fre
quency at 91% and 112%0nom, respectively. A third 
frequency cross-over is detected at about 125%0nom, 

which will not be considered furtheron. At these three 
points the regressing lead-lag mode couples with the 
body modes. Due to the coupling new modes arrise, 
two for each point of frequency coalescense, whereas 
the one is stabilized and the other is destabilized. In 
all three cases an instability exists characterizing the 
ground resonance case. For clearness: it cannot be 
said wether the body modes or regressing lead-lag be
come unstable as can be read by several authors in
vestigating ground and air resonance. The instability 
is due to a coupling of eigen modes and one of the new 
coupled eigen modes becomes unstable. 
A further eigen analysis was performed for the heli
copter in hover for a rotor speed range from 80% to 
120%flnom· The results are shown in fig. 5. The con
sidered rotor speed ranges of fig. 4 and 5 are only of 
an academic interest. Now, as the helicopter is air
borne, the restoring landing gear forces drop and the 
body frequencies are determined by the rotor blade 
flapping stiffness resulting in low frequency rigid body 
modes. The modes are denoted by using conventional 
flight mechanical notations. As can be seen from fig. 

5 the helicopter is free from air resonance, which is 
in correlation with results from EWALD [1]. A weak 
instability exists for the Phugoid motion typical for a 
helicopter in hover. Due to the high equivalent hinge 
offset the flapping stiffness increases with rotor speed. 
The body modes become faster and significant cou
pling occurs between the body rotational modes and 
the flapping modes producing new oscillatory modes, 
see [3]. Especially the body roll mode, which is faster 
than the body pitch mode due to the lower body in
ertia, combines itself with the flapping motion. 

As the two extreme operating conditions (helicopter 
on ground, 0% airborne, and helicopter in hover) have 
been stated it has to be examined what happens in
between these conditions. This is of high interest 
especially for high thrust conditions when the heli
copter is still on ground. To get an idea whatever 
happens in this region a simplified model is consid
ered in chapter four to investigate transient behav
ior. In the same chapter simulation results using the 
spatial model with the two mentioned landing skid 
types will demonstrate differences during transition 
from ground to air for some chosen operating condi
tions. Before this the potential of active control of 
ground resonance is to be considered and the conse
quences of the optimized controllers on the handling 
qualities for the helicopter in hover will be discussed. 

3 Active control of ground resonance 

In stability- and control-theory signal-flow diagrams 
are used to gain physical insight to the investigated 
system. These diagrams can be drawn from the state 
space representation. They keep the same information 
but can be better understood than differential equa
tions. The effects of feedback loops on the dynamic 
behavior can be discussed in a very simple manner. 
It is known from conventional control theory that a 
feedback loop across one integrator increases system 
damping whereas a feedback loop across two integra
tors changes the eigen frequency. 

Fig. 6 shows the signal flow diagram for the helicopter 
on ground or in a hover condition. To reduce complex
ity those states and paths are only retained, known to 
be sufficient to describe ground and air resonance be
havior of a hingeless rotor helicopter [2, 15]. The dia
gram breaks up into three dynamic blocks represent
ing rotor, body and inflow dynamics. Inputs are sine 
and cosine blade pitches. The diagram clearly shows 
that flap and lead-lag motion are highly coupled due 
to aerodynamic and inertial effects. Flapping and dy-
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namic inflow influence each other whereas the cou
pling of lagging and dynamic inflow can be neglected. 
Weak P.aths exist from the cyclic inputs to body roll 
and pitch motion caused by small aerodynamic terms. 
These terms are included, since no ordering scheme 
has been used. Compared with the paths from the 
control inputs to cyclic flap and lag they are small. 
For fixed wing airplanes the control inputs cause direct 
motions of the fuselage. In contrast to that for heli
copters control inputs cause rotor rolling and pitching 
moments due to flapping and thus angular body mo
tions. The relations are that iic mainly influences the 
lateral body motion and ii s the longitudinal body mo
tion. 

Modern rotorcraft make use of feedback of body states 
to improve handling qualities, i.e. to stabilize the ro
tational DOF's and to add a comfortable amount of 
damping to the system. A simple controller structure 
is known as Stability Augmentation Systems (SAS) 
where pilot ond controller act on different paths in 
the system. The mechanism of SAS is to generate ro
tor roll and pitch moments by the use of cyclic inputs 
to achieve the desired rotational reactions. These de
vices are usually designed as limited authority and low 
frequency systems to avoid an interference with rotor 
dynamics. SAS offers a cost effective possibility to 
overcome mechanical instabilities such as ground and 
air resonance. Several authors investigated the effects 
offeedback of body states on ground and air resonance 
stability [5, 8, 9, 11, 16]. STRAUB and WARMBRODT 
[5] investigated the effects of single feedback loops in a 
sophisticated manner. REICHERT and ARNOLD picked 
up the idea of SAS and IBC investigating the potential 
of multivariable feedback loops. But still the conse
quences of the optimized controllers on handling qual
ities have to be discussed. 
The feedback control structure can be found in fig. 7. 
A single body or multiblade rotor state is fed back 
to the cyclic control inputs after being amplified by 
the gain -G,. The phase 'Px distributes the feedback 
signal between iic and iis. Multivariable feedback is 
achieved by adding further parallel loops. 

A first simple approach was made to investigate the 
possibilities of active control of ground resonance. The 
rotor speed was set to 91% nnom according to the 
(re9 -xiG instability. Thrust to weight ratio was layed 
down to 50%. Pitch rate was fed back with a feedback 
phase <p, = goo causing a pure iis input. Together 
with the sign convention from fig. 7 this leads to a 
negative feedback necessary for stabilizing the system. 
In ref. [5, 8] negative feedback was achieved by chos-

ing appropriate feedback phases. The chosen phase 
for this study corresponds with a phase of 270° in [8]. 
As known from the root-locus-theory the eigen values 
move into the zeros of the transfer function qsfi!s for 
increasing gain. This is shown in fig. 8 where the re
gion marked by the dashed box is plotted on the right 
hand side using a bigger scale. The eigen values were 
plotted as crosses x and the zeros as circles o. As can 
be seen from fig. 8 the eigen values of the closed loop 
system move into the zeros. With this the slightly un
stable (,. 9 lxiG mode can be stabilized. Two aspects 
have to be mentioned restricting the success of this 
simple approach. The obtainable damping is limited, 
since a zero occurs right beside the imaginary axis in 
the left plane. But, in the same manner as the in
stable mode is stabilized (prog is destabilized. This 
agrees with results from ref. [3]. Differences are due 
to the coupling of lead-lag and body xiG mode in this 
study. Since the instable (reg I xI e mode crosses the 
imaginary axis at a feedback gain of G, = 0.29 8 and 
(prog becomes unstable at G, = 0.59 8 stability is lim
ited due to the latter aspect. Slightly better results 
could be obtained by an optimization of the feedback 
phase, but since the chosen phase is close to the op
timal phase of pitch rate feedback mentioned in ref. 
[8] this does not seem to be very promissing. Thus a 
multi variable controller was designed. 

Eight states were chosen as feedback signals: 
cc, (c, cs, <s,ps, <P, Qs, and e. Rotor cyclic lead
lag states were included, since (c and (s were men
tioned in ref. [5] to augment system damping levels 
of a (,.9 I<P ground resonance instability. In the same 
study flap modes were not found out to be effective 
in stabilizing the system. Consequently, the flap state 
variables are not considered as feedback signals. The 
chosen feedback variables include all necessary infor
mation about rotor and body motion to suppress an 
oncoming instability for both (,. 9 lxiG, and (re9 lyi<P 
coupling. Scheduling the eight feedback gains and 
phases with rotor speed and thrust to weight ratio 
leads to system stability throughout all operating con
ditions for the linearized helicopter model. Optimiza
tion of feedback gains was done with a computer pro
gram described in [17] applying optimal output vector 
theory [14]. A linear integral quadratic performance 
index is used which penalizes the entire state vector 
and control time history. Thus, every state may be 
penalized although only the output variables are fed 
back 

J = {"" (;rTQ;r + Y.T !!_u) dt. 
lo -

( 4) 
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In the output feedback problem, the performance in
dex is dependent on the initial conditions of the state 
vector 8ild the weighting matrices Q, and E. In or
der to eliminate the dependence onthe initial states 
the performance criterion is averaged for a linearly in
dependent set of initial states. The control vector is 
defined as 

:Y = -Gy = -GCx (5) 

where G is the gain matrix and C the output matrix. 
Hence, the closed loop plant matrix becomes 

(6) 

An optimization was performed using two different 
weighting matrices Q for the same operating condi
tions mentioned above. The results are shown in fig. 
9. The weighting matrix was first set to the identity 
matrix. The closed loop eigen values were plotted as 
diamonds<>. The second weighting matrix used differ
ent weightings. High weightings were chosen for the 
feedback states, low weightings for the well damped 
flap variables. These eigen values were marked by 
boxes D. As can be seen in fig. 9 most of the eigen val
ues remain unchanged. Only the important modes are 
affected by the active control device. With the sim
ple weighting matrix sufficient damping levels can be 
achieved to the unstable ("9 jxje mode. Almost op
timum is achieved with the second weighting matrix. 
Without changing the eigen frequencies significantly, 
damping levels of the stable (re9 /xje and the unsta
ble (re9 /xje modes are almost the same. The amount 
of damping that the one ("9 /xje mode takes from its 
counterpart due to the coupling and therefore destabi
lized the system is shifted back by applying active con
trol. This controller will be denoted C2 furtheron. A 
second controller was optimized setting rotor speed to 
112% !1nom called C3. The same tendencies as men
tioned before can be seen applying this controller to 
the unstable helicopter. The gains and phases are in
cluded in tab. 2 at the end of this paper. 

Up to now rotor speed was kept constant to show 
the root placement in the complex plane. Fig. 10 
shows the aeromechanical stability of the least stable 
mode plotted versus rotor rotational speed. Due to 
the medium thrust to weight ratio rotor speed range 
was limited to a minimum of 60% !1nom. The thick 
line denotes the open loop case. The discussed closed 
loop cases with controller C2 and C3 are plotted as 
dashed and dashed-dotted lines, respectively. These 
graphs clearly show that an immense stabilization is 
achieved for 91% !1nom (C2) and 112% !1nom (C3) but 
a destabilization for controller C2 at 112% !1nom and 

vice versa. This indicates that scheduling of gains and 
phases is effective in order to suppress ground reso
nance at both points of instability. To get a controller 
providing stability throughout the rotor speed range 
without scheduling the method described by STRAUB 
[16] was applied. But, for this study no stabilization 
at all rotor speeds was achieved. This is caused by 
considering two unstable points of rotor /body cou
pling. In contrast to that STRAUB considered an artic
ulated rotor with only one unstable (re9 j y coupling. 
To check this the lead-lag damping constant of tab. 
1 was doubled. Thus, the instability at 91% !1nom 

vanished whereas the instability at 112% !1nom still 
remained but less unstable. Using the eight feedback 
variables a controller was optimized at nominal ro
tor speed. This simple controller was able to suppress 
ground resonance at all rotor speeds. The chosen value 
for the lead-lag damping constant in ref. [16] is more 
than five times the value of this study. But, the intro
duction of active control devices to stabilize aerome
chanical instabilities only makes sense, if at least two 
requirements are satisfied. First, adverse effects on 
handling qualities have to be avoided. Secondly, the 
controller must be able to handle less damped systems. 
This seems to be necessary to avoid further tailoring 
of rotor blades in order to provide the rotor with a 
minimum of damping. 
To make sure that stabilizing the helicopter for all 
rotor speeds is possible a controller was designed by 
changing gains and phases by hand and checking the 
controller efficiency with the eigen values plotted ver
sus the entire rotor speed range .. It turned out that 
feedback loops for UkS and VkS had to be added. With 
this stability throughout the entire rotor speed range 
was achieved. The aeromechanical stability is plotted 
as a thin solid line in fig. 10. This demonstrates that 
a stabilization without scheduling is possible. This 
controller will be termed C1 furtheron. 
To check the consequences of the designed controllers 
C1 and C2 for the helicopter in hover the eigen val
ues were calculated with and without controllers at 
nominal rotor speed and F jmg = 100%. The results 
are plotted in fig. 11. Due to the high feedback gains 
for body pitch and roll states an immense destabi
lization of the lateral mode arises applying controller 
C2. Moreover, a dramatic destabilization of lateral 
mode and Phugoid with controller C1 can be seen. 
There is no doubt that these adverse effects have to be 
avoided. Switching the controller from a "ground res
onance mode'' to an "air resonance mode" seems to be 
problematic, since it takes the helicopter a very short 
time to become airborne and because of the transient 
behavior which will be discussed in the next section. 
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A better solution seems to be to add filters to the 
controller. This has to be discussed in further investi
gations .. ' 

4 Modelling of transient behavior 

4.1 Simplified model for transition consider
ations 

In this section the behavior of a simplified model with 
the above mentioned nonlinear spring/damper system 
is to be compared to those of a linear model. This 
model is shown in fig. 12 and has the rotational DOF 
e and the DOF of vertical translation z. The model 
is excited by the harmonic force Q = Q sin 0 t. Thus, 
a forced response problem will be considered rather 
than a self-excited one. But, already from this simple 
model some fundamental conclusions can be drawn. 
The differential equations of the linear model can be 
easily written: 

mz+2di+2kz 

IeEJ+2da2 G+2ka2 e, 

mg-F, 

Qh, 

(7) 

(8) 

where h is the vertical distance between the e.g. and 
Q and a is the lever of the combined spring-damper
system to the e.g., respectively. Considering F to be 
a constant force, the stationary solution for z is: 

z = (mg- F)/(2k). (9) 

Now, consider a spring-damper-system at each lever, 
which is not attached on the ground. Hence, this 
spring-damper-system cannot transfer tension from 
the body to the ground. The description of the 
spring characteristic becomes nonlinear. The differ
ential equations are: 

mz· + ~d(ir(1+tanhZr)+it(1+tanh Zll) 
2 ez £2 

+ ~ k ( zr + Jz; + "• + z, + .Jzr + "•) 

mg-F (10) 

Iee + ~ d (zt(l +tanh.:!_)- Zr(1 +tanh Zr)) 
c:z £2 

+ ~ k ( Zt + .J zf + E1 - Zr - V z'j: + E!) 

= Qh (11) 

with 

Zr = Z- ae 
z, = z+ae. 

Describing the damper in the written manner, relax
ation of the spring-damper-system can be approx
imately neglected. The equations show, that both 

DOF are coupled for the nonlinear model, whereas 
they are uncoupled for the linear one. 
Now consider the same model with e-DOF only, 
where z is kept at the value given by equation (9). 
Variing the forcing frequency and plotting the ampli
tude (emax - emin)/2 of the stationary oscillation 
shows again fig. 12. The ratio Fjmg was set to 85%, 
the forcing amplitude Q to llOON. The linear model 
shows the well known behavior with the maximum am
plitude at the resonance frequency 0 = we. The non
linear model shows a different behavior: the maximum 
amplitude is about 2.5 times the value of the linear 
model and occurs at a lower forcing frequency. This 
can be interpreted as a reduction in system damping 
and eigen frequency. Due to the nonlinearity, the left 
slope of the curve is much steeper than the right slope. 
This behavior is typical for a system with a degressive 
spring characteristic [4]. For low and high forcing fre
quencies the curves of the linear and nonlinear model 
are identical. 
The response curve was computed using a numerical 
integration routine to get the time history of the differ
ential equations. The stationary oscillation was anal
ysed to get the amplitude (emax- emin)/2. During 
the integration the forcing frequency was varied from 
its lower to its upper value and back again. This is 
necessary since nonlinear systems may show jump phe
nomena which are explained in detail in ref. [4]. These 
phenomena can be described as follows: increasing the 
forcing frequency during time integration the ampli
tude suddenly jumps from a lower to a higher value 
at a certain frequency. A further increase of the forc
ing frequency leads to a continuous curve. Decreas
ing the forcing frequency the response jumps from a 
higher to lower value. For a degressive system treated 
in this study the first jump happens at a higher forc
ing frequency than the second jump. Between these 
two frequencies a region exists where the system can 
respond at least with three amplidudes. The third 
one is an unstable oscillation and cannot be computed 
with a numerical integration routine. In the above 
described response diagram the nonlinearities are not 
strong enough to cause the jump phenomenon. This 
is explained in the same figure. 
The last part of fig. 12 (below) shows the forcing 
frequency for the maximum value (ema• - emin)/2 
for increasing thrust to weight ratio. Curves for two 
forcing amplitudes Q are included in this figure. The 
horizontal line denotes the resonance frequency for the 
linear system. It does not depend upon Q and Fjmg. 
This is different for the nonlinear system. First two 
lines for each Q exist. This is due to the above men
tioned jump phenomenon. For low and high thrust to 
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weight ratio both curves coalescense. Secondly, in
creasing F I mg the forcing frequency for maximum 
amplitude {6maz - 6min)l2 reduces smoothly ap
proaching a certain value for both forcing amplitudes 
Q. This value is given by a Jki(Ie) at Flmg = 100%, 
since only one spring-damper-system at each time has 
ground contact. Computing the response diagram for 
the nonlinear model at Flmg = 100% and for the 
linear model reducing spring stiffness k and damping 
constant d by 112 leads to identical results. Thus, for 
low and high F lmg the nonlinear model seems to be
have like a linear one. 

Fig.13 compares the response diagram of the 6-DOF 
model to that of the z-6·-DOF model for Flmg = 
70%. The jump phenomenon can be seen for both 
models. At a forcing frequency of 10 1ls the ampli
tude (6maz - 6min)l2 jumps from the lower branch 
of the curve to the upper branch and at about 9.3 1 Is 
back to the lower branch again. The mentioned un
stable solution is drawn as a dashed line and can be 
regarded as a fictive linkage of the points of discon
tinuous change. Compared to the 6-DOF model the 
z-6-DOF model shows much lower amplitudes in 6 
response. The region between the two points of dis
continuous change is more expanded i.e. the spring
characteristic is more degressive than in the 6-DOF 
model. A third difference between the two models 
is the local maximum of the 6 response at about 
1l2wx,lin = 112 J2klm. This maximum is due to the 
coupling of 6 and z motion. Looking at the eigen fre
quency of the vertical motion it might be assumed that 
the z-motion is excited in a higher harmonic manner. 
For two given values of the forcing frequency fig. 14 
shows the forced response for 6 and z. The one fre
quency was chosen to be 112w,,lin the second to be 
9 1 Is which is close to the right discontinuity of the 
z-6-DO F model. The time history results of the 
nonlinear model are compared to those of the linear 
one. For both forcing frequencies no vertical motion 
is excited for the linear model but for the nonlinear 
one. Whereas the left picture shows a pure second 
harmonic excitation the right picture includes further 
higher harmonics. Furthermore the nonlinear model 
shows a stationary shift Ll.z from the trimmed position 
(F-mg)l(2k). Both phenomena can be explained by 
the perturbation method. Assume a nonlinear differ
ential equation 

{12) 

The solution in z is in the form of a power series in e. 
The coefficients of power of e must balance and one 
obtains for the first two coefficients 

z0 + w2z0 = Q cos!U 

Z1 + w2
z1 ::::: -zo. 

The solution of equation 13 is 

Q 
zo = 2 !V cos !lt w -

and of equation 14 

1 Q 1 cos 2!1t 
[ 

- ] 2 

z, = - 2 w2 - !J2 [ w2 + w2 - 4!12] 

{13) 

{14) 

{15) 

{16) 

The first term in 16 denotes a steady shift and the 
second term a second higher harmonic oscillation. For 
both simulation results it can be seen that z becomes 
negativ i.e. the body makes small jumps. The pitch
ing motion at !1 = 112w,,lin shows a harmonic os
cillation but for !1 = 9 1 Is further frequencies are 
involved. A FFT analysis has to show which ones are 
included. For both forcing frequencies the angle 6 of 
the nonlinear model shows a phase shift Ll.<p to the 
linear model. 

From that simple model some fundamental conclu
sions can be drawn which are listed below: 

1) 6-DOF model 

- we depends upon F lmg and Q 

- we decreases smoothly with increasing F lmg 

- the behavior of nonlinear system at low and high 
F lmg can be approximated by a linear system 

Flmg "' 0%: woe,nl = af?!I = woe,lin 

Den~ n,,lin 

Flmg "' 100%: a{fi = Woe,lin 
Woe,nl 

Ie .j2 

n,,nl = 
n,,lin 

2 

- the behavior of the linear and nonlinear system 
is identical at low and high forcing frequencies 

2) z-6-D 0 F model 

- z- and 6-DOF are coupled at medium forcing 
frequencies, z-DOF shows higher harmonic fre
quencies 

- the response diagram shows extreme jump phe
nomena 

El-amplitude is lower than El-amplitude of the 
El-DOF model 
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4.2 Spatial model for transition consider
ations 

.. 
After some insights into the behavior of nonlinear sys
tems were given in the previous section the same de
scription of the spring-damper-system used for the 
simplified model is applied to the spatial model of the 
helicopter. Parallel to that a linear landing gear mod
elling is used to show differences in the behavior of 
both modelling assumptions. 

Following the conclusions drawn from the simplified 
model a reduction of body eigen frequencies due to the 
nonlinearity must be identifiable. Thus, several simu
lations with different rotor speeds were performed to 
investigate the dynamic behavior. An instability for 
the nonlinear model was detected at n = 87% llnom. 

The time history results are shown in fig. 15 where f3 
and ( are the blade flap and lead-lag angles in the ro
tating system. Thrust to weight ratio for this and the 
following calculations was set to F fmg = 70%. An 
initial disturbance was applied to the pitch angle and 
was chosen to be 0 = 0.95'. The linear model behaves 
stable but due to the low lead-lag damping the oscil
lation for the linear model vanishes slowly. In oppo
site to that the oscillation for the nonlinear model in
creases dramatically. The oscillation looks irregularly 
and shows an explosive character. The behavior of the 
system depends strongly upon the initial conditions. 
Applying the same initial disturbance to the roll angle 
it does not lead to an instability. The same can be seen 
reducing the initial value for the pitch angle. Increas
ing the initial pitch angle that leads to a rapid desta
bilization of the system within 30 rotor revolutions or 
even faster, depending upon the initial disturbance. 
For linear self-excited systems it is known that already 
infinitesimal disturbances lead to an oncomming insta
bility. Nonlinear systems behave differently depending 
upon the nonlinear quality. A certain amount of ini
tial disturbance is necessary to destabilize the system. 
For low disturbances linear and nonlinear models be
have similarly. This can be explained as follows: Due 
to Ffmg < 100% the trimmed solution for z > 0. All 
four spring-damper-systems are compressed. To re
lax and lift the both front spring-damper-systems a 
pitch angle e is needed which can be computed from 
the trimmed z attitude divided by the spring-damper
offset from the e.g. For lower pitch angles both front 
spring-damper-systems are still compressed. Thus, 
the nonlinear system shows a linear behavior. 

From fig. 4 it is known that the linear model shows 
an instability at l1 = 91% llnom· The time history is 

plotted in fig. 16. This time the linear model shows 
the predicted instability whereas the nonlinear does 
not. But still the instability of the linear system does 
not show an explosive character. From the ground 
resonance test results shown in [7] ground resonance 
is known to be a strong instability for articulated ro
tor helicopters. In this study the lead-lag angle needs 
50 rotor revolutions (about 8 seconds) till its ampli
tude increases to 2'. Opposite to the linear model the 
nonlinear shows no instability for these operating con
ditions. After a transient oscillation the motions show 
an almost constant vibrational amplitude. The reason 
for that is a persistent change of linear and nonlinear 
characteristics. If the model shows linear characteris
tics the chosen rotor speed will lead to an oncomming 
instability. The vibrational amplitudes increase until 
a nonlinear behavior occurs. Due to the nonlinear
ities the eigen frequencies shift, the oscillation is no 
longer self-excited, the amplitudes drop and the pro
cess starts at the beginning. From this it becomes 
clear that this is not a stable but a highly sensitive 
process. A slight increase of the initial disturbance 
leads again to a dramatic instability. 

Finally it has to be tested whether the optimized con
trollers are sufficient to suppress an oncomming in
stability or not. On behalf of the two studied rotor 
speeds fig. 17 shows the closed loop simulation results 
at l1 = 91% llnom· The controller chosen for this sim
ulation was C2 from fig. 10. Although optimized for 
a thrust to weight ratio of 50% the controller is suc
cessful in stabilizing the linear model. The results are 
as good as those of ref. [8]. Looking at the control 
activity this controller is even better, since the con
trol amplitude does not reach 1' whereas it is about 
2' in ref. [8]. Applying the same controller to the 
nonlinear model this leads to a considerable insta
bility within 28 rotor revolutions although the open 
loop system showed a neutral behavior. This is due 
to the high feedback gains and the high moment ca
pacity of the hingeless rotor. Because of the initial 
pitch disturbance (pitch up) the controller generates 
a restoring rotor moment. The fuselage pitches down 
but shoots over and the rear spring-damper-systems 
lose ground contact. Since the controller has been 
designed for a linear system all four spring-damper
systems are expected to generate restoring moments. 
Since only the front springs generate these restoring 
moments this results in a further over-shoot of fuse
lage over its neutral position. After the pitch down 
motion has been stopped the same happens during 
pitching up. Due to the control inputs the flapping 
motion is excited considerably and due to flapping and 
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the fuselage motion lead-lag as well. To test the in
fluence of thrust to weight ratio on the closed loop 
system !'lability F fmg was varied systematically. All 
other values were kept constant. It was found out that 
the controller C2 could stabilize the nonlinear model 
at both investigated rotor speeds !1 = 87% !lnom and 
91% !lnom up to F fmg = 68%. Now instability oc
cured for the linear model within the whole range of 
Ffmg at the critical rotorspeed !1 = 91% !lnom· From 
this it becomes evident that active control is possi
ble even if the described nonlinearities are included in 
the modelling assumptions. Since the lead-lag motion 
grows rapidly the feedback gains of the cyclic lead-lag 
angles were reduced by 1/4 and of the lead-lag ve
locities by 1/10. Roll rate gain was reduced by 1/3. 
All phase angles were kept at their optimized values. 
Finally fig. 18 shows the closed loop time history for 
both investigated models with the modified controller 
at !1 = 91% !lnom· Similar results were obtained at 
!1 = 87% !lnom using the same controller. Due to the 
reduction of feedback gains the model with the linear 
landing gear shows a less stable but still sufficient be
havior compared to fig. 17 and the model with the 
nonlinear landing gear is stabilized this time. 

5 Outlook and Conclusion 

The intent of the presented investigation was to 
demonstrate the possibilities of active control to sup
press ground resonance and to provide an insight into 
the behavior of nonlinear systems. Modelling of non
linearities is important to describe the helicopter dur
ing transition from ground to air. The nonlinear
ities being modelled in this study dealt with non
linear spring-damper-characteristics of the landing 
gear. The characteristics were formulated analytically. 
With this a simple way was found out to specify the 
possibility of losing ground contact and to include the 
nonlinear landing gear description as well as the linear 
one in the same numerical integration routine. The 
helicopter model with the linear landing gear descrip
tion was linearized and transformed into state space 
representation. 

Taking the linearized model as a basis an eigen value 
computation was performed vading the rotor speed 
from 0 to 140% !lnom· Since a low lead-Jag damping 
constant was chosen two instabilities occured. The 
one at 91% !lnom due to a coupling between (rog and 
xje mode the other at 112% !1,,0 m due to a coupling 
between (ro9 and yfiJ! mode. Even a third instabil
ity occured which was not further considered for this 
study. It turned out that the same model was free 

from air resonance. 

Different controllers were optimized using a SAS struc
ture. Single variable feedback was not sufficient in 
stabilizing ground resonance. As demonstrated with a 
root locus plot (prog became unstable with increasing 
feedback gain. Very promising results were obtained 
using multi-variable feedback of the cyclic lead-lag, 
roll and pitch states. Two controllers were designed 
at the two critical rotor speeds and provided suffi
cient stability margins to the system. None of these 
controllers could achieve stability throughout the con
sidered rotor speed range. Thus, additional feedback 
of longitudinal and lateral translational velocity was 
included to the controller design. With this stabil
ity for all rotor speeds was obtained. Applying the 
optimized controllers to the helicopter in hover this 
led to a dramatic destabilization because of the high 
feedback gains. Important aspects and questions for 
further research of active control of ground and air 
resonance are: 

- To keep the complexity of the active device low 
it has to be investigated which states are at 
least necessary for stabilizing ground and air reso
nance. This is especially valid for the rotor states. 

Is it possible to design a controller for ground 
resonance without scheduling the feedback gains 
and phases with rotor speed and thrust to weight 
ratio (collective pitch)? 

Is the designed controller robust enough to handle 
all possible operating conditions (weight, offset of 
e.g. from rotor axis etc.)? 

- To avoid adverse effects of the ground and air 
resonance devices on handling qualities and on 
classical stability filtering of feedback signals has 
to be investigated in more detail. 

- How can the transition from ground to air be han
dled since the helicopter needs a very short time 
to become airborne and since nonlinear behavior 
may occur during transition? 

Regarding this it becomes obvious that further sys
tematic studies have to be carried out in order to ex
plore the full potential of active control of aeromechan
ical instabilities and to investigate the impact of non
linearities on the dynamic behavior of the helicopter. 

Picking up the last aspect the second part of this pa
per dealt with the differences between a linear and 
nonlinear modelling approach. First, a simple plane 
model was considered to gain physical insight into the 
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system. Secondly, the spatial model was investigated. 
Simulation results were used to show differences in 
behavio>. The behavior of the linear and nonlinear 
model depended upon the operating conditions (rotor 
speed and thrust to weight ratio). In addition to that 
the behavior of the nonlinear model depended upon 
the initial disturbance whereas the behavior of the 
linaer model does not. Due to the degressive charac
ter of the formulated nonlinearity an instability arose 
at !1 = 87%l!nom· The instability at !1 = 91%l!nom 
predicted with the linearized model seemed to van
ish but a higher initial disturbance led again to an 
instability. The nonlinear model may regarded to be 
unstable within a broad range of rotor speed whereas 
the linear model is unstable within a "small" band ar
round the critical rotor speed. 
Applying a previous optimized controller to the heli
copter with the linear landing gear showed sufficient 
stability and low control activities. Opposite to that 
the helicopter with the nonlinear landing gear became 
dramatically unstable but stability could be achieved 
for both linear and nonlinear model by reducing sev
eral feedback gains. This may be a hint that filtering 
is possible to stabilize the helicopter during transition 
but further effort has to be made to investigate the 
behavior of nonlinar systems. 
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Controller (c (s (c (s UkS VkS Ps Qs q, e 
C1 0.07s 0.08s 0.25 1.30 0.07 s/m 0.088/m 0.25s 0.338 3.60 1.10 

221° 250° 102° 180° 167° 178° 141° 20° 105° 34F 

C2 • 0.05 8 0.11 s 1.08 1.72 - - 0.048 0.09 s 1.44 0.81 
230° 261° 42° 225° - - 199° 59° 123° 339° 

C3 0.08s 0.08s 1.77 1.54 - - 0.07 8 0.03 8 2.47 0.22 

194° 244° 107° 130° - - 199° 59° 59° 55° 

Table 2: Optimized Feedback Gains and Phases 
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Figure 1: Mathematical Helicopter Model 
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Figure 2: Principle Eigen Frequencies of Different 
Landing Gear Types 
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Figure 14: Forced Response of Linear and Nonlinear Model, Fjmg = 70%, Q = llOON,- Linear Model, 
- Nonlinear Model 
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Figure 15: Transient Response with Linear and Nonlin- Figure 17: Closed Loop Transient Response with 
ear Landing Gear Model, !1 = 87% !lnom, Fjmg = 70% Linear and Nonlinear Landing Gear Model, !1 = 

91% llnom, Fjmg = 70%, Controller C2 
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Figure 16: Transient Response with Linear and Nonlin
ear Landing Gear Model, !1 = 91% llnom, Fjmg = 70% 
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Figure 18: Closed Loop Transient Response with 
Linear and Nonlinear Landing Gear Model, !1 = 
91% llnom, Fjmg = 70%, Modified Controller C2 




