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Abstract 

 
A novel rotor design specifically conceived for lightweight helicopters is described and analyzed with respect 
to its kinematic and basic performance characteristics. The design is based on an innovative gimbal mount 
which allows a quasi-constant-speed transmission from the mast to the hub in a wide variety of relative 
motions between these two elements. This is motivated by the need of alleviating substantial oscillating rotor 
loads transmitted to the mast as a result of cyclic flapping. The rotor design is illustrated in detail and the 
results of several studies are reported, which assess the validity of the proposed design and pave the way to 
further analysis concerned with the rotor dynamic behaviour. 
 

This paper is dedicated to the memory of dr. Vladimiro Lidak 
(1944-2012), Italian helicopter designer and prolific inventor. 

  

1. INTRODUCTION  

Lightweight helicopters represent a widespread 
category of rotorcraft employed in a large variety of 
roles, ranging from pilot school to sports aviation, 
aerial work, scouting, and many more. Contrary to 
larger rotorcraft categories, with their complex 
design and manufacturing processes, economy 
considerations and simplicity of operations have led 
to a markedly lower degree of innovation in this field. 
As a result, the relatively simple two-blade teetering 
rotor architecture is still the prevailing design, with its 
known limitations and drawbacks. 

These are especially to be found in the significant 
2/rev (two periods per rotor revolution) loads 
transferred to the mast as a result of rotor cyclic 
flapping, such as in forward flight or while hovering 
under gust conditions, which impact considerably on 
component fatigue life and eventually in 
maintenance costs. Possible solutions include a 
radical change in configuration, such as with three-
blade fully-articulated designs. However, this is done 
at the expense of the highly valued characteristics of 
the two-blade configuration with respect to ease of 
stowage and transportation, in addition to simplicity 
and economy. 

Among the initiatives towards innovation in light 
helicopter rotor design, we address the gimballed 
main rotor head by Dr. Vladimiro Lidak (1944-2012), 
a missed Italian rotorcraft designer and innovator. 
Lidak’s concept preserves the two-blade 
configuration, while strongly innovates the rotor 
head design, introducing an original homokinetic 
joint below the rotor hub. This joint has been 
specifically designed to alleviate the 2/rev rotor 
loads, at a price of a higher mechanical complexity 

compared to a teetering rotor head. This rotor 
design was chosen by the K4A S.p.A. Italian 
company, along with other patented innovative 
concepts from Dr. Lidak, to be implemented in a 
novel lightweight two-seat helicopter named KA-2HT 
which is currently in an advanced development 
state. 

This paper presents a characterization of the 
kinematics and basic performance characteristics of 
this novel rotor design based on a high-fidelity 
modelling of the complete rotor assembly. 

2. ROTOR MODEL  

2.1. Overview 

The main rotor designed for the KA-2HT light 
helicopter is a two-bladed gimballed, stiff-in-plane 
rotor. The gimbal joint is the main feature of this 
design, allowing the hub to rotate freely about the 
blade teetering and feathering axes. This is obtained 
through a complex hinge system located within the 
rotor head. The designer’s main goal for this peculiar 
architecture is the strive for a good approximation of 
a perfectly homokinetic mast-hub transmission, i.e. 
an ideal linkage providing the equality of the values 
of the mast and hub angular velocities, irrespective 
of the latter’s tilt with respect to the former. 

This characteristic is particularly useful in rotary-
wing systems such as helicopters and tilt-rotor 
aircrafts, because it allows to relief oscillating rotor 
loads exerted on the rotor shaft. Achieving perfect 
constant-speed transmission for general (spherical) 
motions is a complex task and some degree of 
approximation is usually entrained in rotorcraft 
gimbal mount designs. Typically, for a given 
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