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Abstract: The whirl flutter instability imposes a serious limit on the maximum forward flight 
speed of tiltrotor aircraft, and therefore many researches are conducted to improve this 
instability. In this paper, an analysis is formulated to predict an aeroelastic stability of a 
gimballed three-bladed rotor with a flexible control system and flexible wing based on three 
different types of aerodynamic models, which are normal quasi-steady, Greenberg quasi-
steady and unsteady aerodynamic forces. Numerical results are obtained in both time and 
frequency domains. Generalized eigenvalue and Runge-Kutta methods are utilized to estimate 
whirl flutter stability in frequency and time domain, respectively. 
 
INTRODUCTION 
 
Tiltrotor is one of the advanced aircrafts currently under significant development, and it has a 
higher cruise speed and larger payload capability than the conventional helicopter does. This 
aircraft does not require a long runway for taxing, take-off, and landing. There are two modes, 
which are the helicopter and airplane mode. For takeoff and landing, tiltrotor aircraft tilts the 
rotor system vertically, which is attached at the end of wing. This is called as a helicopter 
mode at which vertical takeoff and landing is possible like a conventional helicopter. For a 
cruise flight, the rotor system is tilted forward like a turboprop aircraft. It is an airplane mode 
at which tiltrotor aircraft may have a high cruise speed. However, during the high cruise flight 
condition, the whirl flutter phenomenon appears.  
 
The whirl flutter instability, which is induced by the inplane hub forces, generally imposes a 
limit on the cruise performance in tiltrotor aircrafts. It involves two modes of the tiltrotor 
aircrafts, which are a rotor and a pylon mode. The rotor mode is the backward whirl mode 
which occurs at low frequencies, while the pylon mode is the forward whirl mode whose 
flutter frequencies are near the natural frequencies of the aircraft system. Flutter frequencies 
of the pylon mode are higher than those associated with flutter in the rotor mode. There exists 
a significant difference between the two flutter mechanisms. In the pylon mode the precession 
is in the same direction as the rotor blade rotation. On the other hand, the precession of the 
rotor mode is in the opposite direction. It has been found that the whirl flutter instability 
occurs more frequently in the rotor mode because of the low frequencies [1, 2]. 
 
Precise estimation of the whirl flutter instability is required to enhance the cruise performance. 
Many researches have been conducted to increase aeroelastic stability boundary using several 
design parameters. Hall [1] analyzed the principal destabilizing factors for rotor/pylon whirl 



flutter. They are the rotor pylon mounting stiffness and pitch-flap coupling. Based on his 
research, the stability boundary is decreased when the rotor pylon mounting stiffness is 
reduced and the pitch-flap coupling is increased. The fundamental flap frequencies to enhance 
the aeroelastic stability boundary are examined by Young and Lytwyn [3]. The precise 
flapping frequency is determined between 1.1 and 1.2/rev by static and dynamic stability 
trend. Johnson [4] performed a rigid-blade analysis and validated it with the experimental data. 
He extended the analysis to utilize the coupled blade bending and torsion modes, and the non-
axial flow, which enabled the analysis of the helicopter mode and the conversion operation [5, 
6]. He examined that the blade torsion dynamics was the most affecting parameter to 
introduce the whirl flutter instability.  
 
To improve the aeroelastic stability boundary, active control methodologies are conducted.  
Harmonic Control (HHC) was experimentally employed at both the rotor swashplate and the 
wing flaperon to reduce vibrations in airplane mode [7]. In Ref. 8, Generalized Predictive 
Control (GPC) was experimentally investigated to evaluate the effectiveness of an adaptive 
control algorithm. More recently, refined active control algorithm employed via actuation of 
the wing flaperon and the rotor swashplate was examined for whirl flutter stability and 
robustness augmentation [9]. 
 
However, it is observed that the previous analytical investigations have not considered an 
unsteady aerodynamic effect, which is necessary to examine the phenomenon in a real 
operating environment. In this paper, a comprehensive analysis is developed to accurately 
predict and enhance the whirl flutter instability both in time and frequency domain with a 9 
degree-of-freedom model. The considered model includes the flapping and lead-lag motion of 
the rotor with a flexible control system and flexible wing motion. 
 
1. ANALYCAL MODELING 
 
1.1 Structural modeling 
 
The structural model of the tiltrotor aircraft, which is presented in Fig. 1, is developed based 
on Ref. 4. It is very similar to a typical helicopter structural configuration; however, a few 
modifications are needed because of several additional degrees of freedom such as the rotor 
precone, shaft, and the wing. The present model basically consists of nine degrees of freedom, 
which are three rotor blade flapping ( 0 ,β 1Cβ and 1Sβ ), lead-lag ( 0 ,ς 1Cς and 1Sς ) motions of the 
the rotor, and three elastic wing ( and1,q 2q p ) motions for quasi-steady aerodynamic 
environment. In case of the full unsteady aerodynamic model, four more degrees of freedom 
are required, which are augmented state variables ( and ) for aerodynamics. 
They are explained in detail in the Refs. 10 and 11.  

1 ,CX 1 ,SX 2 ,CX 2SX

 
Using the force and moment equilibrium, the rotor, shaft, and wing equations of motion are 
obtained. Among them the rotor and shaft equations of motion are obtained in a rotating 
frame. Therefore, Fourier coordinate transformation is employed in order to convert these 
equations into those in a non-rotating frame. 
 
In this paper, one of the most important factors of the modeling is the blade flexibility with a 
pitch-flap ( pK β ) and pitch-lag ( pK ς ) coupling. The effective coupling parameters with 
respect to the aircraft flight speed, which is presented in Fig. 2, are adapted from Refs. 4 and 
12. 



The final form of the structural equation is arranged in the left hand side (LHS) in governing 
equations, while the aerodynamic equation is in the right hand side (RHS) of the same 
equation. The more detail expressions of equation are presented in Ref. 11.  
 

 
 

Figure 1. A rotor system with a completely rigid blade 
 
 

 
 

Figure 2. Effective pitch-flap and pitch-lag coupling parameter variation 
 
1.2 Aerodynamic modeling 
 
The aerodynamic formulations are obtained with an assumption that the tiltrotor aircraft is in 
a purely axial flow in equilibrium. Only a perturbation component in aerodynamics is 
considered in this paper. Trim state is assumed to be established already and the perturbation 
from it is considered for flutter analysis. The perturbation velocities are defined as follows.  



 

0 0

0 0

T p
T p

u u
U u

U U
uδ δ δ= +  

(1)

 

( cos sin ) ( )
B Ap y m x m G P pu r Vu z r u uδ β α ψ α ψ δ δ= − + + + = + p  (2)

 

( ) ( sin cos ) ( )( sin cos )

           ( cos sin ) ( cos sin )
      

A B

T Z m y m x m y m x m

G m G m P m P m

T T

u r h V v

V y x
r u u

δ α ς α ψ α ψ α ψ α ψ

β ψ α ψ ψ ψ
δ δ

= − − + + + +

+ + + −

= +

 
(3)

 

p pK Kβ ςδθ θ β ς= − −  (4)

 
where θ  is control input.  
 
In this paper, three different kinds of aerodynamic model are developed to predict whirl 
flutter stability both in time and frequency domains. Those are two quasi-steady and an 
unsteady aerodynamic model. The first aerodynamic model is widely used and is quoted as a 
normal quasi-steady aerodynamics in this paper. This aerodynamic model is developed based 
on Ref. 4. The second quasi-steady aerodynamic model is cited as Greenberg’s quasi-steady 
aerodynamic model in this paper whose detailed equation is described in Eq. (6). It is 
equivalent to replacing  by 1 in Greenberg’s aerodynamic model [13, 14]. For a full 
unsteady aerodynamic representation, Greenberg's two-dimensional unsteady aerodynamic 
model is used [14]. Its expression is also presented in Eq. (7). Both in Greenberg’s quasi-
steady and in full unsteady aerodynamic model, noncirculatory terms are ignored. Since a thin 
airfoil theory is adapted in the present derivation, the effects of noncirculatory terms are very 
small compared with the circulatory ones [15]. 
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where ( ) ( ) ( )p Th t u t cos u t sinδ φ δ φ= − + . 



 
The aerodynamic environment of the typical rotor blade section is presented in Fig. 3. All the 
velocities and forces are estimated with respect to the hub plane. The aerodynamic forces 
acting on a blade typical section are lift (L) and drag (D). Therefore using a life and drag 
forces, the total forces in x and z direction can be obtained [11]. However the aerodynamic 
forces acting on a blade are dominated by the lift in a rotor flow field with a high inflow. Thus, 
the drag forces are not included and only the lC α  terms are retained.  
 

hh

 
 

Figure 3 : Resultant and inflow velocity on a typical blade section 

 
For the full unsteady aerodynamic model, the equations of forces and moments are slightly 
different because of the lift deficiency function,  which is represented only in frequency 
domain. Therefore Jones’ approximation is utilized to predict the stability boundary in time 
domain [16, 17]. The new state-space equations for the augmented state variables and 
circulatory part of the lift can be formulated as a dimensionless form because of the modified 
lift deficiency function. The augmented state variables are associated with a downwash 
velocity at the three quarter chord location [18]. They describe the unsteady effects. In this 
paper the augmented state variables of the typical section at  span location are utilized as 
an averaged value.  
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2. FLUTTER STABILITY ANALYSIS 

After the rotor aerodynamic forces and moments are formulated with the lC α  term, they need 
to be assembled in the structural equations. Therefore they are substituted into the RHS in the 
governing equations. Then, the final forms are obtained with the nine and thirteen degrees of 
freedom for the quasi-steady and full unsteady aerodynamics, respectively. First of all, the 
governing equations with quasi-steady aerodynamic models are given below. The governing 
equations for the normal and Greenberg’s quasi-steady aerodynamic models result in the same 
form.  
 
2.1 Quasi-steady aerodynamic models 
 



Putting the forces and moments of the rotor into the RHS of the governing equation gives the 
following expression. 
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The final form of the governing equation can be rewritten as follows.  
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where the subscript s means a structural part and all elements of the matrices are 
dimensionless.  
 
For simplicity, Eq. (9) can be rearranged as  
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Converting Eq. (10) into a state space form gives 
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2.2 Full unsteady aerodynamic model 
 
Adopting Jones’ approximation, the state space equations for the augmented state variables 
and circulatory part of the lift can be formulated as a dimensionless form below.  
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Substituting the aerodynamic forces and moments with new calculated circulatory part of the 
lift, which is presented in Eq. (13), into the structural equations, a state space equation is 
obtained as follows.  
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The equations of the augmented state variables describe the unsteady effects due to 
downwash at 1/4 chord point. Using the Eqs. (12) and (14), a governing equation, which 
enables analysis both in time and frequency domains, is obtained in a state-space form. 
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3. NUMERICAL RESULTS 

Numerical investigation is conducted to obtain the aeroelastic stability boundary with the 
three different kinds of aerodynamic model. An autorotation condition is considered as a rotor 
operating condition. Autorotation means no restraint imposed on the rotor rotation about the 
hub. Therefore, no rotor torque is transmitted to the shaft, and no pylon roll motion is 
transmitted to the rotor. Since the perturbations in the control pitch input and gust are not 
considered in the present analysis, ,  ,G Z  and  matrices may be ignored in Eqs. (11) and 
(15). The numerical values of the structural parameters are based on Ref. 4. 

*O

 
3.1 Comparison with other existing results 
 
The present analysis is validated against other numerical results provided in Refs. 5, 12, and 
19. The present results are in good agreement with the references. The vertical wing mode 
( ) comparison is illustrated in Fig. 4.  1q
 



 
 

Figure 4 : Damping of the vertical wing mode in terms of the flight speed 

 
3.2 Normal quasi-steady aerodynamic model 
 
This section presents the results of the normal quasi-steady aerodynamic model. Figure 5 
shows the predicted damping of each mode in terms of the tiltrotor flight speed. The vertical 
wing mode ( ) becomes unstable first among the modes considered. Furthermore  and 1q 2q p  
modes become consecutively unstable. Therefore only the wing degrees of freedom should be 
concerned.  
 

 
 

Figure 5 : Damping of the modes in terms of the flight speed 

 
Figures 6 describes the results obtained in time and frequency domain respectively, while 
numerically increasing the flight speed from 480 to 570 ft/sec to find stability boundary. 
Figure 6(a) shows only the results of the wing modes in time domain. It is shown that the 
magnitude of each mode remains stable till V =534 ft/sec. However, it is increased when its 



flight speed exceeds 534 ft/sec. Figure 6(b) shows the  and  mode results through the 
frequency domain analysis at the same flight speed. When the poles of the vertical bending 
mode of the wing are located on an imaginary axis, the aircraft is on the verge of flutter 
stability. If they are located in the right half plane, the system is unstable. Based on the 
present aerodynamic model, it is observed that stability boundary is approximately 534 ft/sec, 
which is considered to be a realistic whirl flutter boundary for the present tiltrotor aircraft. 

1q 2q
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Figure 6 : Time and frequency domain analysis using the normal quasi-steady aerodynamics 

 
3.3 Greenberg’s quasi-steady aerodynamic model 
 
The second aerodynamic model has a similar formulation with that for the normal quasi-
steady aerodynamics. However, the lift formulation has a few different terms. According to 
Eq. (6), a few first-order time derivative terms, which are  and h ,refθ  are newly included in 

Greenberg’s quasi-steady aerodynamic formulation. Here,  is velocity of the flapping 
motion, which is due to 

h
Puδ−  and Tuδ  components, and refθ  is an angular velocity of the 

pitch motion with respect to the inertial frame. The perturbation term of h  is represented 
above and refθ  is organized as follow.  
 

cos sinref p p y xK Kβ ςδθ β ς α ψ α= − − + + ψ  (16)

 

Figure 7 shows the damping of each wing mode, which are vertical bending ( ), chordwise 
bending ( ), and torsion (

1q

2q p ) mode. They have similar trends with the wing modes based on 
the previous normal quasi-steady aerodynamic model. However the critical flight speed is 
slightly increased. It is clear that  mode becomes unstable at approximately V = 550 ft/sec 
among the modes. The precise flutter boundary may be extracted by the system pole result 
obtained from the eigenvalue analysis. 
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Figure 7 : Damping of the modes in terms of the flight speed 

 
Figure 8 shows the eigenvalue results of whirl flutter stability using Greenberg’s quasi-steady 
aerodynamics. According to the results, the flutter boundary is V=540 ft/sec. At this flight 
speed, the poles corresponding to the wing vertical bending mode ( ) are located on 
imaginary axis. There is a slight disagreement regarding the flutter boundary between the 
normal and Greenberg’s aerodynamic model. Under the present Greenberg’s quasi-steady 
aerodynamics, flutter occurs approximately 1% later than it does under the normal quasi-
steady aerodynamics.  
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Figure 8 : Frequency domain analysis using Greenberg’s quasi-steady aerodynamics 

 

3.4 Full unsteady aerodynamic model 
 
As mentioned previously, the quasi-steady aerodynamic model is not capable of describing a 
realistic aerodynamic environment occurring in tiltrotor aircraft. In this section, numerical 
investigation is conducted using Greenberg’s two-dimensional unsteady aerodynamics.  



 
Figure 9 illustrates the results of frequency domain analysis while increasing the flight speed 
from 540 to 660 ft/sec. The stability boundary is shown to be 642 ft/sec based on the full 
unsteady aerodynamics. The critical flight speed is predicted to be the highest under the full 
unsteady aerodynamics as compared with those based on the quasi-steady aerodynamic 
models. The whirl flutter stability is overestimated by the full unsteady aerodynamic model, 
by approximately 18% as compared with the result from the normal quasi-steady aerodynamic 
model. 
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Figure 9 : Frequency domain analysis using the full unsteady aerodynamics 

 
4. CONCLUSIONS 

 

Time and frequency domain analyses are conducted with a newly developed analysis for 
whirl flutter stability in tiltrotor aircraft. The damping of each mode is also calculated. Two 
quasi-steady and an unsteady aerodynamic models are used to predict the whirl flutter 
stability boundary. Among them the flutter speeds based on the two quasi-steady aerodynamic 
models are approximately the same. However the full unsteady aerodynamics predicts the 
whirl flutter instability to occur at a higher speed than quasi-steady aerodynamic models do. 
Also, it is found that the modes concerned with flutter stability are the elastic wing modes.  
 
In the future, a three-dimensional unsteady panel method is utilized to incorporate the wake 
effect for a rotor and wing aerodynamics, and then the aerodynamic interaction between rotor 
and wing will be considered with the wake model, because it induces a vibratory load on the 
flexible wing and fuselage. The wing is believed to be affected by the wake originated from 
the rotor. Elastic finite element modeled wing and blade torsion mode will also be utilized.  
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