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Abstract

During recent years it became clear that wake
distortion effects of rotors that pitch or roll, play a
very important roll in helicopters' flight mechanics,
especially their off-axis response. Almost all the
models of wake distortion that have been reported in
the literature, are vortex models. Yet, most of the
models that are used in flight mechanics simulations
are  dynamic-inflow models, or the more
sophisticated Finite State models. These are not
vortex models, and thus in order to extend them to
include wake distortion effects, additional
assumptions have been adopted. Moreover, there are
fairly large differences between the various models
that were presented. In the present paper a new
actuator disk model is presented that leads to a
system of equations that are similar to the classical
dynamic-inflow equations when disk rates are
neglected. On the other hand these equations include
wake distortion effects that are obtained through a
unified consistent derivation. The model is obtained
by applying two different approaches: Use of the
incompressible and inviscid aerodynamic momentum
equations and a vortex model. These two approaches,
under certain assumptions, lead to identical forms of
the equations. The model is approximate in the sense
that it is based on certain simplifying assumptions.
The new model gives an interesting insight into wake
distortion effects. The results of the derivation are
studied and compared with previous results from the
literature.

1. Introduction

The "mystery" of the off-axis response’, namely the
incapability (up until recently) of helicopter
simulation models to predict correctly the direction
of the off-axis (cross-coupling) response to pilot
cyclic stick command, was the center of many
investigations during the last decade. It was first
pointed out by Rosen and Isser’ that the wake
distortion (denoted geometric effects in that paper)
due to the disk pitch or roll motion, has a significant
influence on the induced velocities and results in a
change in the direction of the off-axis response. The
same authors showed” that these effects also result in
the low damping in pitch and roll of rigid rotors. The
model of Refs. 2,3 is a prescribed wake model that
takes into account unsteady aerodynamic effects, thus
it is capable of considering frequency influences on
the effect. This unsteady predescribed wake model is
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fairly complicated and requires a significant
computational effort that makes this model
impractical for typical flight mechanics simulations.
Aerodynamic models that are suitable for flight
mechanics purposes are actuator-disk models. The
most popular among these models is probably the
dynamic-inflow model of Pitt and Peters®. This
model describes a three state unsteady rotor inflow
distribution that is governed by the rotor thrust, as
well as the aerodynamic pitch and roll moments. This
model was later on extended to the Finite State
Unsteady Wake Model’, that includes higher
harmonic functions for azimuthal load distribution
(as compared to the three functions of the dynamic-
inflow model), as well as a higher number of radial
shape functions described by Legendre polynomials.
Originally the dynamic-inflow model did not include
the effect of wake distortion. Keller® was the first to
introduce this effect into the dynamic-inflow
formulation. It was done by introducing the wake
distortion parameter due to angular rate, K, into

the regular three ordinary differential equations of the
dynamie inflow approach. The value of Kg was
calculated based on modeling the wake of a hovering
rotor as a vortex tube, namely replacing the actual
rotor with an infinite number of blades with constant
bound circulation, while neglecting wake contraction.
The straight vortex tube in hover, is replaced by a
curved vortex tube that is associated with a steady
pitch or roll rates. Kg was calculated to be 1.5. In
Ref. 7 system identification methods were applied to
determine the wake distortion parameters, which are
required to match between the off-axis response of
both linear and nonlinear models, and flight test
results. The authors obtained values of Kg ~ 3 that
are twice the theoretical value of 1.5 (both are for
hover).

References 6 and 7 were followed by other
publications where the value of Ky was calculated
using different vortex models. Krothapalli, Prasad,
Peters and Barocela®'' presented a series of
investigations. In Ref. 8 the momentum theory was
used to obtain the value of K for hover and

forward flight, and then combined it with an actuator
disk theory. They obtained a value of Kg =0.5 for

hover and Ky =1 for vertical climb, compared to
the hover value of Kgr =1.5 of Ref. 7. In Ref. 9 a
vortex lattice model was used. For axial flight a value



of Kg =1 was obtained that agrees with the results

of the momentum theory. In hover a value of
KR =0.5 was obtained that again agrees with the

momentum theory, but in addition an effective
doubling of the wake curvature was observed, that
offsets the reduction of Ky . In Ref. 10 a model for

wake distortion in hover was augmented using results
of a vortex tube representation. For hover a value of
Kgr =1.0 was obtained and the authors indicated

that the difference from Keller's model (Kg =1.5)

was due to the constant wake curvature assumption in
Keller's approach. In Ref. 10 the authors also
indicated that after using the vortex lattice method of
Ref. 9 for 3, 4 and 5 bladed rotors, the average value
for Kr effective was found to be approximately

1.33. This value was determined by calculating the
effective moment on the rotor blade, rather than
calculating the coefficient of the radial inflow
distribution. In Ref. 11 the authors continued to
emphasize the important influence of the contraction
of the wake (in hover) on the effective curvature of
the distorted wake. They used a value of Kg =1.33,

combined it with a generalized wake model, and
obtained results that showed good agreement with
wind tunnel flapping results of the SBMR rotor.

Free wake analysis is a natural candidate for an
analysis where the wake distortion is important.
Bagai, Leishman and Park'*"” studied the
aerodynamics of a rotor undergoing steady-state pitch
or roll, using a free-vortex model of the wake. They
obtained a value of KR =2 for hover, while the

results were somewhat dependent on the pitch rate
and blade lift distribution caused by blade twist.
Another free wake model that approximates the wake
as a series of vortex rings, was used by Basset and
Tchen-Fo'*. They showed the influence of vertical
speed and rotor thrust on the value of K . For hover

a value of KR =1.6 was obtained that agrees with

the value obtained in Ref. 6.

Keller and Curtiss" extended their initial studies,
using a prescribed (rigid) wake approach to study the
influence of advance ratio on wake distortion effects,
during steady pitch or roll. They also applied their
model to investigate the damping in pitch or roll of a
hovering rigid rotor (the case that was investigated in
Ref. 3). They found that a value of Kg =1.1 gave
the best correlation with previously published test
results, a value lower than the Kr =1.5 that was
obtained in their previous analyses.

Various investigators implemented the dynamic-
inflow model, extended to include the wake
distortion effect, into simulation codes, and identified
the values of K that gave the best correlation with
flight test results. Hamers and Grunhagen'®
concluded that good results for a BO-105 in hover
are obtained if Kg =1.5. He Chengjian, Lee and
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Chen Weibin'” used Ky =1.20 for a typical rotor

thrust coefficient 6000he inclusion of the wake

distortion effect in a finite state dynamic wake model
resulted in the correct trend of the pitch/roll off-axis
response, but still underestimating the magnitude of
the off-axis response. Including unsteady airloads
provided very minor further improvement (this
conclusion was in agreement with the results of Ref.
13), thus indicating that the intensity of the wake
distortion effect is probably underestimated.
Theodore and Celi'® presented comparisons between
the results of simulations using various values of
KRr (L, 1.5,2), and also comparing the results with a

free wake analysis. It was shown that different values
of KR give better agreement with the flight test

results at different stages of the maneuver. The free
wake model predicted the off-axis response more
accurately than the extended dynamic-inflow model.
In Ref. 19 the wake distortion was taken into account
using a KR coefficient within the Pitt and Peters

dynamie inflow model. In the investigated case of an
isolated articulated rotorw’ using a regular value of
KR from the literature, the effect of wake distortion

was found to be small and the amount of coupling
was underestimated compared to what would be
needed to improve the correlation between the
calculations and wind tunnel results. The results of
Ref. 19 were in contrast to previous comparisons
with flight test results, as well as new results that
were presented in Ref. .2@{amers and Basset >°
presented comparisons between results of simulations
and flight test results of a BOsl@nd a Dauphin

performing a Dutch-roll. In the simulations they used
Pitt and Peters dynamic-inflow model and the more
complicated Finite State Unsteady Wake model of
Ref. 5. For both models the wake distortion factor at
hover was set to Kgr =1.5 showing good agreement

with flight test results.

The above survey was confined to hover or axial
flight since this is the subject matter of the present
paper. Yet it is worth pointing out that few of the
references included also forward flight analyses.

Based on the above literature survey the following
conclusions are drawn:

a) The wake distortion effect due to rotor pitch and
roll is strong at hover and diminishes with
increasing velocity. It is essential to take this
effect into account in order to obtain satisfactory
agreement with the off-axis response measured in
flight tests or wind-tunnel experiments. This
effect usually does not result in a deterioration of
the on-axis results, and in many cases it even
improves them in comparison with
measurements.

b) Dynamic-inflow models, or the more detailed
Finite State Unsteady Wake models, are
commonly used for flight mechanics simulations
and other purposes. These models can be



extended to take into account wake distortion
effects, by introducing the wake distortion
coefficient K . This coefficient is influenced by

the magnitude of the axial velocity.

c¢) Almost all previous calculations of the wake
distortion coefficients were based on a vortex
modeling of the wake. There are very significant
variations between the values of the coefficients
that have been reported in the literature. The
calculated values for hover range between
Kr =05 and Kg >2.

d) Various studies in the past indicated that the
values of Kg that were obtained by various

theoretical  derivations, underestimate  the
intensity of the effect. In certain hover cases
values of Kr =3 were found to give the best

agreement with flight test results.

¢) The first detailed model of the wake distortion®*!
included the effect of pitch and roll rate
variations. Yet all the models that were developed
to calculate the wake distortion coefficients,
assumed steady pitch or roll. The importance of
modeling the transient behavior of the rotor wake
was pointed out by Curtiss™, but he did not
present a model that deals with the issue.

The purpose of the present paper is to present a new
approximate actuator-disk model for hover and axial
flight, that will address few of the problems that were
pointed out above (based on the literature survey).
Unlike previous derivations where the wake
distortion coefficients were calculated using a vortex
wake model and then added to a dynamic-inflow
model that was obtained using a different approach,
the derivation of the wake distortion effects in the
present paper will be an integral part of the derivation
of the entire model.

The present model will be derived using two
different approaches:

a) Using the momentum equations of an inviscid,
incompressible fluid.
b) A vortex model.

The new model will not be confined to constant
pitch or roll rates, but it will also consider time
variations of the angular rates. The results of the two
approaches will be compared and conclusions drawn.
Results of the model will also be compared with
experimental results from the literature.

2. Derivations Based on Using the Momentum
Equations of an Inviscid and Incompressible
Fluid

2.1 General Derivation

Two systems of coordinates are used: a Cartesian
system (x ,y, z) and a cylindrical system (r,v,z).
The origin and z axis of both systems coincide. x, y, z
and r are non-dimensional and obtained after dividing
the dimensional coordinates by the disk radius, R.
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Fig. 1: The Cartesian and cylindrical systems of
coordinates.

Small perturbations about a basic state of hover or
axial flight are considered. The basic state is
axisymmetric, and thus described by the non-
dimensional axial and radial components of the flow
relative to the disk, V, and V,, respectively.
Equations for flow in a cylindrical system of
coordinates can be found in Ref. 23.

The perturbations about the basic state include a
non dimensional axial velocity of the disk, up, and
the non-dimensional pitch and roll rates of the disk,
qp and pp, about the axes y and x, respectively.
The non-dimensional angular rates are obtained after
dividing the dimensional angular rates by the rotor
angular speed, Q.

The systems of coordinates are attached to the disk:
The origin coincides with the disk center, the
coordinates x, y, r lie in the disk plane and z
perpendicular to it. The non-dimensional perturbation
in the axial velocity of the flow, relative to the disk
coordinates system, is u,. The non-dimensional

perturbation in the pressure (about the basic state) is s
(the dimensional pressure is divided by p AQZRz,
where pp is the air mass density). The equation for

u, becomes (see Ref. 31):

* ou, av,

ou oV *
uz+V, + z z

0z 0Oz D

u,+V,

o

% %

+1(qp CosSY +pp siny)+2V,(qp cosy +pp siny)
0s

=—— 2.1
% 2.1)

(*) indicates differentiation with respect to a non-

dimensional time, Qt.

The present derivation will be confined to cases
where the axial velocity in the basic state is uniform
over each cross-section of the flow (namely, a plane
z = const). Thus the underlined term in the last
equation can be neglected.



In what follows perturbations about two basic states
will be considered: a rotor in a fast axial flight and a
rotor in hover.

2.2 A Rotor in a Fast Axial Flow
In this case:
V=0 VvV, =V, 2.2)

where V. is the velocity of the axial incoming flow

>

in the basic state.
Substitution of Eq. (2.2) into Eq. (2.1) results in the
following equation:

o

L Ve 2 e Ppsi 23)
uz+ —=+unt+r cosy + s =— .
2+ Ve ~Hup (qp cosy +pp siny) ™

Similar to the classical dynamic-inflow approach,
taking only the first three harmonics from a more
general solution, it is assumed that:

Uy =Wyof0(2)+ (Wt siny +wyercosy)fy(z)—up

- r(pD siny + qp cos W) 2.4)
W0, Wgzs and wye, as well as upy,qp and pp,

are functions of time.
The functions f((z)

following conditions:

fo(0)=11(0)=1; fo(=0) =f1(-0)=0 ;
fo(0)=ag ; fi(w)=a;

ag and aj represent the increase in the induced

and fi(z) satisfy the

2.5)

velocity far behind the rotor. According to the
momentum theory ag and aj are equal to 2. Yet is
should be noted that various sources, as early as Ref.
24, indicate that ag and probably a; may differ
from 2.

It is clear that Eq. (2.4) satisfy the conditions at
z =— oo . The functions f(z) and fj(z) will change
as a result of an increase in the rate of change with
time. The present derivation will concentrate on
harmonic perturbations, having a frequency ®. Thus
fo(z) and fj(z) are in general functions of the
frequency ratio k (k = 0/Q).

The non-dimensional pressure is chosen to also
include the first three harmonics:
s=—-sofp(z)/ag +(sgrsiny +s.r cosy)fj(z)/a;

for z<0 (2.6a)
S= —So[f()(Z)/aO —1]
+(sgrsiny +s.r cosy)[fy(z)/a; —1]

for z>0 (2.6b)

Sp, Sg and S, are in general functions of time.

The last equations satisfy the condition of zero
pressure perturbations at z=+o. It allows a
pressure jump across the disk, As, where:

As =s5( —sgrsiny —s.rcosy 2.7)
Simple integration over the disk indicates that:

sg =ACT ; sg =4ACL A ; s =4ACMA
ACT , AC LA the
perturbations in the disk aerodynamic: thrust
coefficient, roll moment coefficient and pitch

2.8)

where and ACpp are
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moment coefficient, respectively. They are in general
functions of time.

Substitution of Eq. (2.4) into Egs. (2.6a,b), using an
approximation method to replace the functions of z
by parameters that are in general functions of k (any
weighting residuals method, like Galerkin method or
collocation method, is a natural candidate for this
approximation procedure, see Ref. 25) and
comparing harmonics, lead to the following system
of differential equations:

[M 1w} +[Le 17w} = AC) 2.9)
where:
mo(k) 0 0
Mcl=| 0 myk) 0 (2.10a)
0 0 mk
ao 0 0
L =V 0 —aj/4 0 (2.10b)
0 0 —a/4
W =< W, Wy, Wpe > (2.10¢)
(AC}T =< ACT,AC] A, ACpA > (2.10d)

Equation (2.9) has the same form as the dynamic
inflow equation of Pitt and Peters’. Moreover, if the
values of ap and aj according to the momentum

theory are chosen equal to 2, the matrix [LEI] of Eq.

(2.10b) is identical to the same matrix in Ref. 4. The
matrix [M] has the same form as in Ref. 4, but the
actual values of the diagonal elements depend on the
approximation approach of replacing the functions of
z.

The distribution of the axial component of the
induced velocity through the disk, v, is (see Egs.
(2.4), (2.95)):

V=W —Up +I[(Wy —pp)siny + (W, —qp)cosy]
(2.11)

It should be noted that v is given relative to the
axially moving, pitching and rolling system of
coordinates. In many cases and applications (most of
the simulation codes for example) the induced
velocity at the disk is described relative to an inertial
system that coincides at each moment with the
pitching and rolling system (either x, y, z or r, 0, z).
The induced velocity in this case is denoted A :

A=MAg +r1(hgsiny +Ai; cosy) (2.12)
The relation between V and A is:
A=v+up +r(stin\u+qD cos ) (2.13)

It turns out that according to Eqgs. (2.11-13), for the
case of a fast axial flight:

A =Wgo 3 Ag =Wyg 5 Ag =Wy (2.14)
Equation (2.14) indicates that in the case of a fast
unsteady axial flight, the influence of wake distortion
disappears if the induced velocity is measured
relative to an inertial system.



2.3 A Rotor in Hover

In the case of hover the basic state includes only
axially symmetric induced velocities. As indicated
above, it is assumed that V, is uniform over each

cross-section of the wake, therefore:

V, =Vz08(2) (2.15)
where:
g(0)=1; g(-0)=0; g(o)=b (2.16)

V,o is the nondimensional induced axial velocity
through the disk, in the basic state. V,,b 1is the
induced velocity far beneath the rotor, in the basic
state. According to the momentum theory b = 2.

If Eq. (2.15) describes the basic axial induced
velocity, a radial induced velocity that satisfies the
continuity equation is:

1
Vi == Vaor g'(z) (2.17)

Substitution of Egs. (2.15) and (2.17) into Eq. (2.1)

results in the following equatin for hover:

Ou,
0

* 1 ou
Uz—— Vo g'(2) —% + V08(2)
or Z

> +V5e'(2)u,

* * * .
tup+r (qD cosy +p sin )

. 0s
= Vzor g'(2)(qp cosy + ppy siny) = % (2.18)

Interesting quasi-solutions of Eq. (2.18) can be
obtained and are presented in Ref. 31, but they are
not presented here because of lack of space. Based on
these solutions it is assumed that:

Uy =W5ofo(2) —Up +1 (W SinY+ W cosy) g(2)
+r[wph(z) —ppIsiny +r[wgh(z) —qp]cosy  (2.19)

W05 Wzs Waer Wp and W, are functions of

time. f,(z) and g(z) satisfy the conditions of Eqgs.

(2.5) and (2.16), respectively. h(z) is a continuous
function of z, that satisfies the following conditions:

h(0)=1 (2.20a)
Ih'(z)|<<|g'(z)| for —1<<z<<1 (2.20b)
h(-o0)=0 (2.20¢)

It is well known that the wake contraction is fairly
fast and occurs very close to the disk. Thus g'(z)
obtains finite values near the disk, but it drops to very
small values (practically zero) as the distance from
the disk increases. Equation (2.20b) expresses the
assumption that near the disk h(z) changes much
slower than g(z).

It is clear, based on Egs. (2.20a-c), that Eq. (2.19)
satisfies the conditions at z = —o0.

The nondimensional perturbation in the pressure, s,
is chosen as:

s=-ACt g (2)fo(z) (agh)

+41 (AC A siny +ACpa cosy)g(z)f1(z)/(ab)
for z<0 (2.21a)

s = ~ACT[g(2)fo(2) agh) 1]

+41 (ACL A siny +ACpa cosy)[g(z) f(z)/(a1b)—1]

for z>0 (2.21b)
Substitution of Egs. (2.19) and (2.21a,b) into Eq.
(2.18), using again an approximation method to
replace the functions of z by parameters that are
functions of k, and comparing harmonics, lead to the
following set of differential equations:

%
mi(k)wz + Vygagbw,, =ACT +Vzom2(k)uD

(2.222)
[Mh]{w*m} +[L1H]‘1 (Wmt={AC,}  (2.22b)
M2, e} +[L3 1w ) = o} (2220)

The vectors and matrices that appear in Egs.
(2.22b,c) are defined below:

1, (m3k) 0
Myl —{ 0 m3(k)} (2.23a)
LA
1 -1 _ 16
L1 =V w2 (2.23b)
0 =
16
2, 1 [mg) 0
My 1= V.. [ 0 m4(k)} (2.23¢)
2, |msk)y 0
[L2] _{ ) ms(k)} (2.23d)
(Wi} T =< Wy, Wae > (2.23¢)
(AC T =< AC[ A, ACMA > (2.23f)
Wit =<wp,wq > (2.23g)
(o7 =< Pp-dp > (2.23h)

The axial nondimensional induced velocity through
the disk, v, is (see Eq. (2.19)):
V=u,(z=0)=wWy —up +1[(Wy +Wo —pD)sin\u
+(Wge tWq —qp)cosy]
(2.24)

Wz0,Wzs, Wge,Wp andwg  are obtained after

solving Egs. (2.22a-c).

The nondimensional axial induced velocity through
the disk, relative to an inertial system of coordinates
that coincides (at the moment of observation) with
the moving pitching and rolling system, A, is defined
by Egs. (2.12) and (2.13). Using these equations and
Eq. (2.24), results in the following expressions:

Ao =Wy 5 Ag =Wy +Wp Ao = Wye +Wwq

(2.25)
W,0,Wgzs and w,. are obtained by solving Egs.
(2.22a,b). wp and wgq are obtained by solving Eq.

(2.22¢).
In most of the previous investigations, instead of
using separate equations for the two pairs of
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unknowns: and two

(W 25> Wye) (Wpawq):
equations were used for the sums: (w5 +wp) and
(Wze +Wq). This is convenient since (see Eq. 2.25)
Ag and A,

(2.22b,c) it is clear that the replacement of the four
equations by only two equations can be performed if:

respectively, are obtained. From Egs.

[My]=y[M%]

(L1 =y MR
where y in general may be a function of k.

In this case the equation for the induced velocity
relative to an inertial reference system becomes:

(2.26a)
(2.26b)

[MIH ] {%m}+[LlH ]_1 {Am}={AC}+7v{w} (2.27a)

Dot =<hghe > (2.27b)
It should be noted that the wake distortion effect in
the present derivation is a direct result of taking into
account the radial induced velocities in the basic state
(Coriolis accelerations). In light of this it is
interesting to note that Refs. 10, 11, based on a
completely different approach and obtaining different
results, pointed out the important influence that
contraction may have on the distortion effect.

3. Derivations Based on a Vortex Model

As in the previous section, the derivations here are
also concerned with small perturbations about a basic
state of hover or axial flight. At first the basic state
will be defined. Then perturbations about this basic
state will be considered.

In order to obtain a disk theory, an infinite number
of blades is assumed. This assumption has been used
by many researchers in the past and is presented for
example in Refs. 26-28. It was shown in Ref. 27
(page 166) that this assumption is equivalent to the
time averaged induced velocity of a rotor having a
finite number of blades.

In the present analysis the blades are presented as
lifting lines. As a result of wvariations in the
circulation along the blade, trailing vortices leave its
trailing edge. Due to time variations of the bound
circulation, shed vortices are also leaving the blade.
The trailing and shed vortices form the wake.

The wake geometry has a major effect on the
results. In the present analysis it will be assumed that
each vortex element that leaves the blade cross-
section moves axially with a velocity that is equal to
the average axial velocity at that cross-section, in the
basic state. This average axial velocity is the resultant
of the incoming axial flow at infinity, and the average
axial component of the induced velocity at that cross-
section. The influences of the radial and tangential
components of the induced velocity are neglected, as
well as variations of the induced velocity along the
wake.

67-6

In the present analysis harmonic perturbations are
considered that have an identical frequency.

The systems of coordinates that will be used are
attached to the disk center - moving, pitching and
rolling with the disk. These are the same systems that
were used in the previous section: A Cartesian
system (X, y, z) and a cylindrical system [(r,y,z) or
(P21,

3.1 The Basic State

As in the previous section, the basic state includes

an incoming nondimensional axial velocity V..

It is assumed that the wake in the basic state is
comprised only of a tip vortex. The nondimensional
axial velocity of each vortex element of this tip

vortex, relative to the disk, is Vi, . In the case of a

disk model (an infinite number of blades), the
nondimensional axial velocity that is induced over
the disk is uniform and equals (see Eq. (7.10) of Ref.
27)):

Vio = NpLotip /(4nViip) (3.1
Lotip 18 the nondimensional circulation of the tip
vortex of each blade (in the basic state).
Nondimensionalization of circulation is obtained
after dividing the dimensional value by OR?. Ny, is

the number of blades.

As indicated in Ref. 27 (p. 165), the
nondimensional velocity that is induced at the blade
tip, along the vortex cylinder, is (vj, /2), therefore:

Vtip =V +Vig /2 (3.2)
In the case of a fast axial flow:

Viip = Ve (3.3)
In the case of hover:

Viip = Vio /2 (3.9

If Eq. (3.4) is substituted into Eq. (3.1), the

following relation is obtained for hover:
Npotip / (8nv§p): Nyl / (27: Vizo): 1 (35

The nondimensional axial velocity over the disk,
relative to the disk plane, is denoted vy:

Vg =V +vj, (3.6)
It is clear that for a fast axial flow:

Vg =V, (3.7
For hover:

Vg = Vi (3.9)

3.2 The Perturbations about the Basic State
The perturbations about the basic state include three
elements:
a) Perturbations in the disk position and orientation.
b) Perturbations in the aerodynamic loads along the
blades.
c) Perturbations in the induced velocity over the
disk.
The perturbations
orientation at time

in the disk position and
t, are defined by a



nondimensional axial motion, Azpy(t), and pitch and
roll angles, AOp(t) and A¢p(t), respectively,

relative to the Dbasic state. Since harmonic
perturbations at a frequency ® are considered:

Azp (1) = Azpe'®* (3.9a)
AOp (1) = AOpe!®T (3.9b)
Adp (1) = Appyel®” (3.9¢)

Azp,ABp and A¢p are complex amplitudes that
represent magnitudes and phase shifts.

The perturbations in the aerodynamic loads that act
on the blade are described as perturbations in the
bound circulation. The circulation at the cross-section
p of a blade at azimuth p, at time T, is:

F(p, 1, 7) = QR [T, (p)

, (3.10)
+ (AT, + ATl psinu+AT, pcosp)e'®’]

I’y (p) is the circulation in the basic state, while
ATy, Ay and AI'. are the perturbations.

The perturbation in the induced velocity is also
harmonic with a frequency ®. Thus the
nondimensional induced axial velocity over the disk,
at time T, relative to the disk, is:

Vi (1,9, 7) = Vig + AV (1, ) - €' (3.11)

V., is the induced velocity in the basic state.

10

Av;(r,y) is the amplitude of the perturbation. The

perturbation of the induced velocity is calculated

using the Biot-Savart law. It is the sum of four

contributions:

a) Perturbation in the circulation of the tip vortex.

b) Perturbations in the circulation of the trailing
vortices of the inner field.

¢) Shed vortices.

d) Wake distortion effects.

The detailed calculations are presented in Ref. 31.

Similar to the previous section, Av;(r,y) is

expressed as follows:

Avi (1,y) = Avjy +Avig Tsiny +Avj. rcosy +

. (3.12)
Avip T8iny +Avig rcosy

Avis and Avj. are dependent on the aerodynamic
moments, while Avj, and Avjq depend on the

angular rates and present wake distortion effects.
The complex equations for the five unknown
coefficients are:

Avio = (Jkeo +1k Jiso Jtip2 Iv / Vs)

J, AC (3.13a
AERZIS S )
2dyoVs
Av; K; K,][AC
{ VIS}:_ 1 { 1 2H LA} (3.13b)
Avic Vedy1 | =Ko Ky [ACMmA
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AVip . PD
{Aviq}_de(JkSZ —ikJke Jiip2 Iv /Vs){qD
(3.13¢)
K=y +DJker =ik Tgs1 U tipa Jv +J1s2)/ Vs
(3.13d)
Ko =(k? Jigt T2 / Vs +ikTie Jg)  (3.13¢)
where:
Ty =Vy/Vip (3.14a)
Tiipa = 0.84 (3.14b)
Tipa =0.17 (3.14c)
Ty =0.93 (3.14d)
T =0.79 (3.14e)
T =057 (3.14f)
and:
N ot
Twd :b_oztlp (3.15)
47tVtip

The coefficients Jiip2, Jtipa, Jts2.Js1 and  Jgp

represent linear approximations to more complicated
functions of'r.

dy and dy that

represent unsteady aerodynamic characteristics of the
cross-sectional lift force. In fact they are lift-
deficiency coefficients of the cross-sections. In the
present analysis these unsteady effects will be
neglected, namely d, and dy; will be taken equal

are complex numbers

to one.

Jkeos Tkels Tke2» Tkso» Tksl Jks2
correction factors to approximations adopted during
the derivations. These are approximations of sine and
cosine functions, where only the first term in the
series is included. All the corrections that will be
used here have the form:

1/(1+c1k? /V2)
This expression reminds of the next missing term in
the series. The corrections start to be effective only at
relatively high frequency ratios (high k wvalues).
These corrections can be found based on a more
refined analysis. In what follows they will be chosen
such that they will result in a good correlation with
experimental or flight test results.

and are

4. Comparison between the Two Models
According to Egs. (3.3), (3.7), (3.14a) and (3.15),
for a fast axial flow:
Jwa =0 Jy =1 4.1)
According to Egs. (3.4), (3.5), (3.8), (3.14a) and
(3.15), for hover:
Jy =2 4.2)
In Ref. 31 a detailed comparison between the
results of Sections 2 and 3 are presented. It is shown
that full resemblance exists between the two and the

>

Jwa =2

>



results of Section 3 can be used to obtain the matrices
ML 1,IM% ] and [L3,] of Egs. (2.22a-c).

5. Results and Discussion

The model that was described above was
implemented in a simulation code of a hovering
helicopter. In this code the fuselage has six degrees
of freedom that are described by three
nondimensional velocity components of the center of
mass (uf,ve,wg - forward, to the right and
downward, respectively) and the three
nondimensional angular rates (pf,qf,n¢ - roll, pitch
and yaw rates, respectively). The hub center is
located at a height h above the fuselage center of
mass. The rotor degrees of freedom include rigid
flapping and pitch angle variations. In the present
analysis only the first three multiblade degrees of
freedom are considered. The azimuth angle of blade
n at time t is y(n,t). The flapping angle of that

blade, B(n, 1), is:
B(n,1)=
Bo (1) +Bc(1)-cosy (n, 1)+ P (1) siny (n,71)

(5.1)
The pitch angle of the same blade, 0(n,t), is:

0 (n,7)=

0, (t)—A1(7)-cosy (n,7)—B(1)-siny (n, )
(5.2)
Lead-lag motions of the blades are ignored.
The disk nondimensional axial velocity, up, roll

rate, ppy, and pitch rate, qp,are thus:

Up =wg —0.75-60(1) (5.3a)
PD = P —Bs() (5.3b)
ap = ar ~Be(® (5.30)

As indicated in section 2 above, an upper asterisk
indicates differentiation with respect to the
nondimensional time. The blade three-quarters
spanwise cross-section is chosen as the representative
point in Eq. (5.3a).

The complete model, as presented by Egs. (3.13a-
¢), was implemented into the simulation code. Initial
studies for different rotors at different basic states
showed that the influence of the off-diagonal
elements in Eq. (3.13b), the K, elements, is

negligible. Therefore these elements will be
neglected in what follows.
The correction coefficients will be:

Tt =1 (5.4a)

1

- (5.4b)
1+k%/ V2

Jist =Jke2 =
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1
Jks2 = (5.4¢)

1+0.5k%/ V2,

In hover or axial flow the axial motion up and

coning (By(t)) are usually only very slightly

coupled with other degrees of freedom. Therefore the
present study will concentrate on the more interesting
pitch, roll and disk tilt degrees of freedom.

Two cases will be investigated:

a) The frequency response of a fixed shaft rotor in
hover.

b) The frequency response of a hovering helicopter.

5.1The Frequency Response of a Fixed Shaft

Rotor in Hover

The flapping response of an articulated rotor in
hover, to harmonic cyclic pitch variations, is
investigated. The rotor is the one that was tested at
the Modane S1 wind tunnel and results reported in
Ref. 19. More details about the model and test
procedure appear also in Refs. 29, 30.

The model has a radius of 2.1 m and a reference
chord of 0.1593 m. The solidity is 0.0966 and the
offset is 0.075 m. The aerodynamic characteristics
are given in Ref. 19. Since a detailed data about the
mass distribution was not available, typical
characteristics have been assumed. This inaccuracy
may result in certain inaccuracies in the results.

The on-axis flapping response, PBg/Aj, is
presented in Fig. 2. Three kinds of calculations are
shown:

a) A complete model.
b) A model that does not include wake distortion
effects.

¢) A complete model where the matrices [Mh] and

[Ly17" in Eq. (2.22b) are replaced by the

equivalent matrices of the dynamic inflow-model

of Ref. 4.

Differences between the calculations appear only
at relatively high frequencies. It is shown that the
influence of wake distortion on the on-axis behavior
is negligible. The changes in the aerodynamic
matrices result in larger differences, increasing the
differences between the experimental and calculated
results.

There is a good agreement in the phase angle
between the results of the complete model (with and
without wake distortion) and the experimental
results. In the case of the amplitude the experimental
results are lower than the calculations and the
difference seems to increase with the frequency. This
difference appears also in Ref. 19. It probably
indicates that a certain phenomenon is missing in the
modeling of the rotor (mechanical damping,
mechanical phase lag, etc.) that affects the quality of
the results.
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Fig. 2:The on-axis flapping response of a fixed shaft
rotor in hover, PBg/Aj. Comparison between the

results of: a) A complete model. b) A model without
wake distortion effects. ¢) A complete model with
different aerodynamic matrices. d) Experimental
results (Ref. 19).

It should also be noted that the experimental
results exhibit certain phenomena in the range 7-12
Hz (see the sharp local increase in phase). This is not
predicted by the numerical model and it may be the
result of lead-lag effects, or again other effects that
are missing.

o
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O  Experimental results
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Fig. 3:The off-axis flapping response of a fixed shaft
rotor in hover, B./Aj. Comparison between the
results of: a) A complete model. b)A model without
wake distortion effects. c) A complete model with

different aerodynamic matrices. d) Experimental
results (Ref. 19).

The off-axis flapping response results, B./Ajf,

are presented in Fig. 3. In this case wake distortion
effects have a significant influence at frequencies in
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the range 1Hz - 10 Hz. The influence is especially
large in the case of the phase angle, that in the
presence of wake distortion exhibits sharp variations
at frequencies higher than 1 Hz. The changes in the
aerodynamic matrices have non-negligible influences
only at relatively high frequencies, especially on the
amplitude.

A comparison with the experimental results
indicates that the complete model predicts a drop in
amplitude at the frequency range 1-6 Hz that is also
shown by the experimental results. Yet the
experimental results exhibit a much larger drop,
especially for 0.5-1 Hz. If wake distortion is
neglected, the amplitude is gradually increased as the
frequency is increased.

In the case of the phase angle, a model that does
not include wake distortion does not exhibit the large
change in phase angle except for very high
frequencies (above 20 Hz). The complete model
exhibits the correct change in the phase angle. Yet
there are differences between the theoretical and
experimental results, especially in the region 0.5-3
Hz, that probably are the results of the same reasons
that resulted in differences in the on-axis response.
Again, like in the case of the on-axis response, the
experimental results exhibit certain phenomena in the
range 7-12 Hz (local extremum in amplitude and
phase) that are not predicted by the calculations.

5.2 The Frequency Response of a Hovering UH-60

The on-axis response in this case is the fuselage
pitch response to longitudinal stick oscillations
(qf /lon) or fuselage roll response to lateral stick

(pr /lat).

In Fig. 4 the same three calculated results of
Fig. 2, are compared with flight test results. It is
shown that in the case of the on-axis response the
influence of wake distortion effects is not large and
appears at low frequencies. While wake distortion
effects improve the agreement between the calculated
and measured amplitudes, it somewhat worsens the
agreement of the phase angles. The influence of the
change in the aerodynamic matrices is relatively
small, it presents a certain improvement in the ampli-
tude of (pg /lat) in the range 2-4 rad/sec. It should

be noted that b in Eq. was chosen as 2. Choosing a
value of b = 2.31 will give results that are very
similar to those of the other aerodynamic matrices.

The off-axis response is shown in Fig. 5. It
includes (qr /lat) and (p¢ /lon).

In the case of (qr/lat) the agreement between

the results of the complete model and the flight test
results is fairly good throughout the entire range of
frequencies. If the wake distortion effects are
neglected, then very large differences appear in the
amplitude over a wide range of frequencies. The
known difference of 180° in phase, over a large range
of frequencies is also evident. The influence of
changing the aerodynamic matrices is relatively
small.
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In the case of (pf/lon) the agreement between

the amplitude of the complete model and the flight
test results is fair, with increasing differences at low
frequencies. The minimum at medium frequencies, 1-
2 Hz, appears in the both results. The influence on
the amplitude of ignoring the wake distortion effects
is smaller than in the case of (qf/lat). Yet in the

case of the phase angle, differences of 180° appear at
low and medium frequencies (up to 2 Hz), if wake
distortion effects are ignored. The influence of
changing the aerodynamic matrices is relatively small
and confined to higher frequencies. Please note that
although in the case of (pf/lon) the difference in

phase seem to be large throughout all frequencies, for
frequencies higher than 3 Hz the phase difference is
roughly 360°, namely equivalent to zero.
Investigations have shown that (pg/lon) is very

sensitive to small variations in the various

parameters.

6. Conclusions

The derivation of a new approximate actuator
disk model of a rotor during hover or axial flight has
been presented. This model considers variations in
the induced velocity over the disk as a result of
variations in the loads along the blades, as well as
wake distortion effects.

Two different approaches have been used to
develop the model:

Both approaches describe the axial induced
velocity through the disk by the three first terms in an
infinite series: A uniform component together with
sine and cosine components in azimuth that have a
linear spanwise distribution. Five differential
equations are obtained that describe these terms:

a) A single equation that describes the perturbation
in the uniform component of the induced velocity
due perturbations in the thrust coefficient and
axial motion of the disk.

b) Two equations that describe the sine and cosine
linear components of the perturbation, due to
perturbations in the aerodynamic roll and pitch
moment coefficients. These equations are
analogous to the same equations in the dynamic-
inflow model.

c¢) Two equations that describe variations in the
linear sine and cosine components due to pitch
and roll rates of the disk, namely, wake distortion
effects.

All the models in the literature that added wake
distorton effects to regular dynamic -inflow models
combined the four equations, (b) and (c), to form two
equations. It is shown here that this combination can
be done only after special conditions are fulfilled. In
general the two pairs of equations are separate.

In both approaches the velocity is calculated in a
noa inertial reference system - an axially moving,
pitching and rolling reference system. In most of the
simulation codes the induced velocity relative to an

inertial system, that momentarily coincides with the
disk system of coordinates, is used. Thus it is
necessary to use the transformation between the non-
inertial and inertial reference systems. A lack of
doing this may result in increasing inaccuracies in the
results.

The system of equations that are obtained by the
two approaches are very similar, except for a
coupling between two equations of (b) above, that
exists in the results of the vortex approach and does
not exit in the results of the momentum approach.
Yet, numerical investigations showed that for most
practical purposes this coupling is negligible and thus
can be ignored. Therefore it can be concluded that
both approaches lead to equivalent systems of
equations.

Both approaches are based on certain
approximations. One of the main approximations in
the vortex model includes the neglect of higher order
terms in the frequencies. This approximation may
lead to increasing errors at high frequencies of the
perturbations. Correction coefficients have been
suggested to correct for certain approximations.
These correction coefficients can be determined by
applying a more refined theory. In the present
analysis they have been determined such that a good
agreement with experimental or flight test results is
obtained.

The new model shows nice agreement with
experimental and flight test results from the
literature. It succeeds in improving significantly the
results of the off-axis response, that otherwise exhibit
large  differences  between  theoretical and
experimental results.

The form of the new model is very similar to that
of the widely used dynamic-inflow model. Thus, the
extension of existing codes that use the dynamic-
inflow model, to also include the new model, is
straightforward and can be done without facing any
real difficulties.
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