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ABSTRACT 

Helicopters are susceptible to buffet induced 
vibrations of control surfaces. The control surface 
vibrations can result in vibrations in the cockpit 
because of the typical design of rotorcraft fuselage that 
includes the usual mass distribution, the inertia 
distribution and the locations of heavy components. In 
the past, many design modifications and passive 
vibration control techniques have been used to reduce 
the buffet induced vibrations in rotorcraft. In this 
paper, a method of designing an active structural 
control to minimize the amplitude of these buffet-
induced oscillatory loads and the resulting responses is 
presented. The design of the active structural 
controller is based on the use of an offset 
piezoceramic stack actuator assembly and acceleration 
feedback control. A method of estimating the number 
of piezoceramic stacks and the associated design 
parameters of the actuator assembly, to control the 
buffet induced vibrations, is discussed. 

INTRODUCTION  

1. Stabilizer Buffeting 

Many helicopters and rotorcraft are susceptible to the 
stabilizer buffet. The stabilizer buffet has been 
observed in rotorcraft like V-22 and RAH-66. The 
reasons for the stabilizer buffet have been attributed to 
high angle of attack operations and the aerodynamic 
shapes of the fuselage of these rotorcraft. Sometimes, 
the bluff aerodynamic shape of the rotorcraft results 
from the design to accommodate low observability 
requirements.  

An important consequence of the stabilizer buffet is 
the buffet induced vibrations of the vertical stabilizer. 
Because of the typical design of the rotorcraft 
fuselage, the vibrations of the vertical stabilizer cause 
vibrations of the fuselage and the horizontal stabilizer 
when it is used in the design. In some rotorcraft, 
vibrations induced by the stabilizer buffet are further 
enhanced because of the unsymmetric design of the 
rotorcraft. For example, in some helicopters, stabilizer 

buffet induced vibrations are observed at angles of 
attack ranging from 4 to 20 degrees and at forward 
speeds in the range of 40 to 165 knots. Buffet 
induced vibrations at low angles of attack are 
attributed to the bluff aerodynamic shapes. The 
stabilizer buffet and the resulting vibrations are a 
problem in some currently operational rotorcraft[1].  

Even though the stabilizer buffet induced vibrations 
significantly contribute to the overall vibrations of a 
helicopter or a rotorcraft, a significant amount of 
attention has been given only to the control of the 
higher harmonic vibrations that are observed at 
frequencies corresponding to integral multiples per 
revolution of the rotor. Other sources of rotorcraft 
vibrations that have received attention are the self-
excitated vibrations due to flutter, ground resonance 
and vibrations transmitted by the engine and the 
transmission. Very little effort has been devoted to 
the reduction of buffet induced vibrations. 

2. Buffet Induced Vibrations and Their Control 

To date, the source and the mechanism of the 
stabilizer buffet are not well understood. However, 
the turbulence induced by the bluff aerodynamic 
shape and the vortices shed by the rotor/fuselage 
system are suspected to be the causes. A direct effect 
of these unsteady air loads is the vibration of the 
empennage. Then, because of the typical design of a 
rotorcraft fuselage (mass distribution, inertia 
distribution and the location of the heavy 
components), the induced empennage vibrations can 
cause the vibration of the cockpit and the horizontal 
stabilizer. The resulting effects of these buffet-
induced vibrations can be of the same order as the 
other sources of vibration and include fatigue 
damage, a restriction on the maneuver capability and 
the fatigue of the pilot and the crew.  

An aerodynamic solution is to use strakes to modify 
the flow and thus reduce the magnitude of buffet 
loads. This approach has serious adverse effects and 
can reduce the flight envelope. Several passive 
structural solutions are sought. This includes 
stiffening brackets, modifying the design of the 
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horizontal stabilizer, stiffening the aft stabilizer cone 
and stiffening the vertical stabilizer. Such passive 
structural modifications, in a fixed wing aircraft, have 
not been able to eliminate or even significantly reduce 
the buffet load induced vibrations and the resulting 
fatigue damage[6][22]. 

An active control option is to use smart or adaptive 
structures concept to attenuate the buffet-induced 
(unsteady air load induced) vibrations. In the proposed 
approach, the objective is not to oscillate an 
aerodynamic surface like a flap that can produce 
control loads to counter the air loads due to buffet. 
Similar procedures have been proposed to control 
higher harmonic vibrations in a helicopter either by 
oscillating the entire rotor blade or a flap at higher 
harmonic frequencies. Instead, in the proposed smart 
structures approach, piezoelectric or other transducers 
are attached to the airframe and used to apply a control 
force/moment to the structural system. These actuators 
and the associated active control can be designed to 
actively induce an additional damping to the system. 
In this process, energy of the vibrations of system is 
transferred to an electronic system from the structural 
system and thus inducing active damping or electronic 
damping by the use of airframe mounted actuators.   

Such an active structural control system needs sensors, 
actuator assemblies and controllers. On the basis of 
the published papers in the field of smart structures, an 
open research area is the development of methods to 
provide the needed actuator control authority to reduce 
vibrations. In reference [6], an offset piezoceramic 
stack based actuator was introduced. This actuator has 
the potential to provide the needed control authority to 
dampen the buffeting-induced vibrations in a 
rotorcraft. In reference [6], the effectiveness of the 
offset piezoceramic stack actuator is established 
through analysis and wind tunnel tests on a 1/16-
scaled model of the F-15 aircraft. 

In this paper, the subject of the design of the active 
vibration control of a helicopter is addressed. By the 
use of piezoceramic stack-based actuators, 
accelerometer sensors and acceleration feedback 
controllers, the vibrations due to stabilizer buffeting 
are to be minimized. Finite element models and 
available information on the flight loads are used to 
place the sensors and actuators and design the 
controller parameters. In a previous paper, feasibility 
of the use of airframe mounted piezoceramic actuators 
to control buffet induced vibrations in a rotorcraft was 
addressed. In this paper, a method is developed to 
calculate the number of such actuators needed to 
control the stabilizer buffet induced vibrations.  

PROBLEM SETTING 

To describe the method of design of the active 
structural control, we consider a specific rotorcraft 
that is similar to RAH-66. As can be seen from the 
flight test data of this rotorcraft[1], there are three 
frequency bands that are important for buffet induced 
vibrations. These frequency bands are  

� 5 - 8 Hz 
� 10 – 13 Hz 
� 22 – 25 Hz 

An analysis of the flight test data, by the use of the 
NASTRAN finite element model and load 
identification procedures, indicates that the bending 
and torsion modes of the vertical stabilizer are 
important. The vibration of the vertical stabilizer 
causes the vibrations of the horizontal stabilizer and 
the vibration of the fuselage. To obtain a model for 
the vibration system, we can consider the vertical 
stabilizer as a beam with coupled bending and torsion 
vibrations. If we can actively control the bending and 
torsion vibrations of the vertical tail we can reduce 
the buffet induced vibrations in the horizontal 
stabilizer and the fuselage.  

Then, the problem is as follows: 

1. Can we control the buffet induced vibrations in the 
rotorcraft by using airframe mounted offset 
piezoceramic stack actuators, accelerometer sensors 
and appropriate controllers? 

2. How many actuators do we need to control the 
buffet induced vibrations at all practical forward 
velocities of the helicopter and at all practical 
angles of attack? Where should we locate the 
actuators and sensors?  

In this paper, we have developed a method to 
calculate the number of smart or adaptive actuators 
assemblies (offset piezoceramic stack actuators) 
needed to control the buffet-induced vibrations. It has 
been assumed that the flight test data provide the 
excitation loads. It has also been assumed that the 
first bending and first torsion modes of the vertical 
stabilizer cause primary excitation of the buffet 
induced vibrations. It is also assumed that the 
locations of the sensors and actuators can be pre-
selected.  

To describe the method, the problem is further 
simplified by using a bending-torsion coupled 
cantilever beam to model the vertical stabilizer, and 
use a lumped mass and a lumped inertia to model the 
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horizontal stabilizer. The dimensions of the ensemble 
of the empennage are shown in Figure 1.  
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Figure 1 The dimensions of the ensemble of stabilizers 
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Figure 2 Offset Piezoceramic Stack Actuator 
Structural Assembly 

 
Based on the previous experience with F-15 stabilizer 
buffet induced vibration control and the associated 
successful wind tunnel tests[6], acceleration feedback 
controller (AFC) is selected. To complete the study, it 
is necessary to follow these steps. 

� As a first step, we have to develop a closed loop 
model of the vertical stabilizer structural dynamic 
system, accelerometer sensor, OPSA actuators and 
AFC (controllers). The effect of the horizontal 
stabilizer can be considered as a combination of a 
non-structural mass and lumped inertia. Alternately, 
we can adjust the frequency of the vertical stabilizer 
on the basis of the experimental results of the 
system that consists of both the vertical stabilizer 
and the horizontal stabilizer. This will be sufficient 
for considering the first torsional mode response of 
the vertical stabilizer.  

� Then, use the closed loop model to design controller 
parameters. 

� From the controller parameters and the information 
on exciting loads at 100 knots, the needed 
maximum control force can be obtained. 

� The maximum control force is then used to select 
the type of the piezoceramic stacks, number of 
stacks and the associated OPSA design parameters. 

This procedure and results are discussed in the 
following sections. 
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Figure 3 The axial strain of OPSA generated by plate 
deflection (before and after deformation) 
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Figure 4 The diagram of the closed-loop active 
control system 

3. Model for the Offset PZT Stack Actuator 

An offset PZT stack actuator (OPSA) assembly is 
shown in Figure 2. It was designed by Bayon de Noyer 
and Hanagud[6] to transform the longitudinal motion 
of the stack into moments that will produce the 
control actuation. OPSA has been successfully 
applied to F-15 buffeting control. The major 
advantages of OPSA in comparison to other PZT 
actuators such as PZT wafers are its large control 
authority, reliability and maintainability properties. A 
unidirectional PZT stack that is mounted, as shown in 
Figure 3, generates a longitudinal (axial) stress. The 
expression for this stress is given by, 

EYdY s
E

33s
E −ε=σ  (1) 
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where ε is the longitudinal strain, σ is the longitudinal 
stress, YE

s is the longitudinal short-circuit Young’s 
modulus, d33 is longitudinal piezoelectric constant, and 
E is the applied electric field. The stabilizer structure 
is assumed to be in x-y plane and its deflection is 
given by . The OPSA is placed in the 
direction of s

r
and its center is located at (xa, ya). If we 

assume that the axial strain is uniformly distributed 
along the span of the piezoceramic stack, the axial 
strain can be approximated as (as shown in Figure 2 
and 3), 
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If we assume that the spontaneous electric field is 
negligible, i.e. the internal electric field of the 
piezoceramic stack  (PZT) is equal to the acting 
voltage over the thickness of each layer of PZT stack, 
and also that the electric field is uniform through the 
span, the axial force can be approximated by 
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and As is the cross-section area of PZT. (x1,y1) and 
(x2,y2) are the two ends of the PZT supports. V(t) is 
the voltage and tlayer is the thickness of each layer of 
PZT stack. PZT stack consists of nlayer layers of 
ceramic, i.e. ∆L=nlayer×tlayer. 

4. Modeling of Closed-Loop System  

In this paper, single-input-multiple-output (SIMO) 
controllers are used. The active control system is 
presented in Figure 4. The accelerometer is used as a 
sensor, while multiple OPSAs are assumed to be 
attached to the stabilizer structure as actuators. The 
sensor is at (xs, ys), the center of the two sets of 
actuators are located at (xi

a, yi
a) (i=1,2) with 

orientations αi to the elastic axis. The offset and the 
length of these OPSAs are h and ∆L, respectively 
(Figure 2). The forces that the PZT exerts on the 
stabilizer can be divided into three parts: two point 
bending moments, two point torsional moments, and 
an extensional force. All these forces are caused by the 
longitudinal force of PZT stack. The implemented 
electric field and the strain caused by the deflection of 
the stabilizer structure contribute to the longitudinal 

force of PZT stack. If one actuator does not have 
enough control authority, more PZT stacks are 
needed, either at the same or at different positions. 
However, the outputs of all these PZT stacks are 
assumed to be additive at approximately the same 
location. The governing equations for this closed-
loop system are given by, 
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where m, EI, and GJ are the distributions of mass, 
bending stiffness, and torsional stiffness. xα denotes 
the distance between the elastic axis (e.a.) and center 
of gravity (c.g.) axis. w(x,t) and θ(y,t) are flexural 
deflection and the cross-section rotation of the beam. 
∆p(x,y,t) is the differential pressure distribution of 
the inboard and outboard of the vertical stabilizer. 
f1(y,t) [lbs×inch-1] is the generalized aerodynamic 
bending loads, and f2(y,t) [lbs] is the generalized 
aerodynamic torsion loads.  [volt] (i=1 and 2) is 
the control signal. ξ

)t(η i

ci and ωci are controller 
parameters to be designed. b [volt×g-1] is the influence 
parameters of the sensor. Fs

i is the longitudinal force 
of the ith set of OPSA stacks. ns

i is the number of the 
ith set OPSA stacks. fh1 [lbs] and fh2 [lbs× inch] are the 
equivalent forces of the horzontal stabilizer acting on 
the vertical stabilizer. The effects of the axial force 
induced by OPSA on the vertical stabilizer are not 
included in this model. These terms are of higher 
order and result in nonlinear equations. The study by 
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Hanagud et al showed the induced frequency changes 
are small due to these axial force effects[21]. 

The flexural displacement at any position (x, y) of the 
stabilizer is given by . That is,  )t,y,x(w
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We employ Galerkin’s method and include two 
important comparison functions of the stabilizer 
structure. 
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are negligible, then  
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Substituting equation (13) into equation (10e),  
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Substituting equation (14) into (5), multipying 
equation (5a) and (5b) by f(y) and φ(y) respectively, 
and integrating with respect to y from 0 to L 
(Galerkin’s method), we can obtain, 
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To increase the control force and to achieve the 
maximum control authority, OPSA set 1 that is used 
to control the 1st bending mode is placed along the 
elastic axis, i.e. α1=0°; while OPSA set 2 that are 
employed to control the 1st torsion mode is placed at 
a orientation of α2 to elastic axis, e.g. α2=45°. For the 
first two modes, the torsion-bending couplings are 
negligible. The torsion-bending coupling caused by 
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the performance the PZT stacks are also neglected 
because these effects are small. Then, equation (15) 
becomes, 

{
{ }












φ+=ηω+ηωξ+η

φ+=ηω+ηωξ+η

+ηωγ−ηωγ−=ω+

+ηωγ−ηωγ−=ω+

2ss1s2
2

2c22c2c2

2ss1s1
2

1c11c1c1

22
2

2c222
2
s1

2
1c121

1
s2

2
22

12
2

2c212
2
s1

2
1c111

1
s1

2
11

q)y(xq)y(fb)t()t(2)t(

q)y(xq)y(fb)t()t(2)t(

)t(fananq€q

)t(fananq€q

&&&&&&&

&&&&&&&

&&

&&

}
 

 (16) 
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where 1a and 2a are the generalized modal influence 
parameters of the actuator for the 1st and 2nd modes. 

)t(f1 and )t(f 2 are the generalized modal loads. Since 
the actuator will stiffen the structure, it is seen from 
equation (17i) and (17j) that the stacks increase the 
natural frequencies ω1 and ω2. The frequencies 
increase with the offset h, the axial stiffness of the 
stacks, number of the stacks and curvature of the 
structure at the actuator locations.  
 
In further numerical illustration, the problem is 
simplified by considering only the torsion mode of the 
vertical stabilizer. This induces a yaw-motion in the 
horizontal stabilizer structure. Then, γ1=0, i.e. OPSA 
set 1 is removed. Then, the system is uncoupled into 
two sets of one-degree system except that the sensor 
signal is coupled. It is noted that it is practicly 
impossible to separate pure torsion response from the 
sensor signal. However, we only consider the 
frequency band around 11.6 Hz, at which the bending 
response is smaller than the torsion response. Then, 

we obtain signal around 11.6 Hz for controlling the 
system. Then, 
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Where )y(bxb ssφ= [volt×inch×g-1] is the total influence 
parameter of sensor. The modal damping that can be 
obtained from experimental measurement is added to 
the system as in equation (18). The modal frequency 
is adjusted according to the experiments (so the 
effects of horizontal stabilizer on the modes are 
accounted). The system described in equation (18) is 
a single degree of freedom structural system with 
acceleration feedback control. The crossover point 
theory[6] is used to design control parameters.  

5. Single Degree of Freedom Acceleration 
Feedback Control 

According to equation (18), we can get the transfer 
functions of both the open- and the closed- loop 
systems. The transfer function of the response and 
excitation for the open-loop system is given by 
equation (19). Equation (20), (21) and (22) give the 
transfer functions of the excitation and the response, 
the controller signal and response, the controller 
signal and the excitation for the closed-loop system, 
respectively.  
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The Laplace transform of each variable is represented 
by the corresponding capital letter. I2(s) is the 
Laplace transform of η2(t). The subscripts ‘op’ and 
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‘cl’ represent ‘open-loop’ and ‘close-loop’. The 
crossover point, i.e. a single closed-loop natural 
frequency resulting for the 2 degree of freedom system 
equation (18), is obtained when the roots of the 
closed-loop characteristic equation, i.e. the 
denominator of equation (20), are repeated complex 
conjugate pairs. This yields, 
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Where ωf and ξf are the natural frequency and 
damping ratio of the closed-loop system, respectively. 
We have five unknowns as ff22c2c . 
Equating the coefficients the power of s,  

,,,, ξωγωξ













ω=ωω

ωξ=ωξ+ωξ
ωξ+ω=ωγ+ωξωξ+ω+ω

ωξ=ωξ+ωξ

2
f2c2

ff2c222c

2
f

2
f

2
f22

2
s

2
2c2222c2c

2
2c

2
2

ff2c2c22

2
42ban4

2

 (24) b

A practical choice of parameters to satisfy equation 
(24) is 
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The controller and the closed-loop system have the 
same frequency as the open-loop system ω2. Since the 
damping of open loop system is usually quite small 
about 0.1-0.2%[1][13-14], we can significantly increase 
the damping of the closed-loop system by selecting or 
designing a large controller damping. The desired 
controller gain is proportional to the selected 
controller damping, and can be reduced by adjusting 
the influence parameters of the actuator and sensor 

22a and b , or by increasing the number of the stacks. 
It is noted from equation (17c,g) that, increasing 
OPSA offset, and/or selecting high performance 
piezoceramic stack, and/or placing OPSA at the 
position of large curvature can increase the actuator 
influence parameters.  

From equations (19-20) and (23),  
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When 22c ξ>>ξ , the closed-loop response is 
reduced significantly in comparison to open-loop 
response at ω=ω1. For example, if 22cξ , then  10ξ=
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6. Controller Authority Analysis and Minimum 
Number of Needed Actuators 

From equations (21) and (22),  
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As noted before, I2(jω)  is the frequency response of  
η2(t). To calculate the authority of the controller, we 
consider the worst situation, that is, 
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From equations (8) and (9), we obtain the expression 
for the blocked force as |Fc| as,  
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Which, at any situation including 2ω=ω , cannot be 
greater than the maximum blocked force |Fc|max 
(manufacturer’s listed value). That means, 
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Therefore, we can obtain that  
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Substituting equation (29) into (32) and rearranging 
terms, the maximum gain under the expected 
operation is given by,  

To guarantee that the controller gain can achieve the 
performance requirements and warrant the 
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operational safety of the stack, the designed gain from 
equation (25c) should be always not greater than the 
maximum gain given in equation (33). This means,  
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From equation (34) and equations (16b,d, and h), we 
obtain that the minimum number of needed stacks 
n2

s,min is given by 

maxc

22
12

1
2
2

2
2

f

2f

maxc22

22
E
s

2
22c

22c2
min,s

|F|

)j(F€

L
)y()y(

sinLh
1

2
)(

|F|a

)j(Fak

)(
)(

n

ω









∆
φ−φ

α∆ξ
ξ−ξ=

ω

ξ+ξ
ξ−ξ

=

−
 

 (35) 

Usually, the designed damping ratio ξf for closed-loop 
system is much larger than damping ratio ξ2 of the 
open-loop system. Then, 
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It is seen that the minimum number of needed stacks 
is proportional to the magnitude of the maximum 
encountered aerodynamic loads. However, the number 
can be reduced through the choice of high 
performance PZT stacks (large blocked force), and/or 
placing the stacks with large slope α2 to elastic axis 
and/or at the position with steep torsion deformation, 
and/or increasing the offsets.  
 
From the flight test data at 100 knots, PSD of 
differential pressure at frequency 11.6 Hz at a typical 
location (7% chord 30% span) on the vertical 
stabilizer is adapted from Figure 4.35 of Ref [1]. From 
PSD of this typical point, we can calculate PSD of the 
generalized aerodynamic modal load according to 
Equation (A5) in Appendix. However, only the 2nd 
generalized aerodynamic modal load is needed. It is,   
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Then, 

inlbs1016.5|F€| 2
hz6.11f2 ⋅×==  (39) 

Fixing two parameters, i.e. ∆L = 5.7 in (real 
dimension used in F15 lab at Gatech) and the closed-
loop damping ratio ξ to be 0.5, OPSA is placed at the 
location close to the root (with largest torsion 
moment) and α2=45°. The number of stacks needed 
for different performance PZT stack and OPSA offset 
is calculated and listed in Table 1. 

Table 1 Number of PZT Stacks 

Offset h 
 

1 inch 2.5 
inch 4 inch 

P-830.10 
(1kN) 17 7 5 

P-247.70 
(48kN) 1 1 1 

Table 2. Open Loop Parameters  
(Determined by horizontal Stabilizer Data[1]) 

 Frequency Damping 
Ratio 

Horiz Stab Yaw 
Mode 11.8 0.8% 

Table 3. Designed Controllers for Yaw Mode 

Controller  

Freq1 Damping 
Ratio1 Gain1 

Design 1 11.8 3.5% 0.12 

Design 2 11.8 9.5% 1.12 

 
7. Controller Parameters and Performance 

The open-loop modal information obtained from 
reference [1] is presented in Table 2. The damping  
ratios are obtained from experimental measurement. 
And the desgined controllers are shown in Table 3, 
and shown in Figure 5 that is obtained from 
following the precedure dissussed above.  

In Table 3, the placement of OPSA is the same as 
shown before. PI P-247.70 HVPZT (48kN) is used as 
the actuator, and PCB 303A02 accelerometer is used 
(b=10mv/g). The stack number is chosen to be 1 and 
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h=2.5in. The actuator influence parameter is 10 
(a=10).  
 
To estimate the reduction of AFC, the reductions of 
PSD of longitudinal response at horizontal stabilizer 
left tip at 100 knots are calculated and presented in 
Figure 6. The reductions for design 1 and 2 at the peak 
are 70% and 90%, respectively. The open loop data is 
obtained from ref [1]. 

 
Figure 5 Transfer Functions of Controllers  
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Figure 6 Comparison of the Frequency Response with 
and without Controllers 

CONCLUSIONS 

It has been shown that acceleration feed back 
controllers can be designed with smart structures-
based offset piezoceramic stack actuators (OPSA) to 
control buffet-induced vibrations. The OPSA actuators 
have the potential to provide sufficient control 
authority to control the vibrations. To accurately 
design minimum weight controllers with sufficient 
control authority, questions of optimum placement of 

these actuators and optimum design of the controllers 
must be addressed. Observability issues should also 
be addressed where necessary. The resulting 
controllers should be validated in wind tunnel tests 
and flight tests. 

APPENDIX 

Generalized Aerodynamic Modal Loads 

If the distribution of differential pressure ∆p(x,y,t) is 
measured, the generalized aerodynamic modal loads 
for the ith mode can be obtained as 

∫∫ =∆=
A

ii ,2,1idxdy)y,x(g)t,y,x(p)t(Q L  (A1) 

The auto-correlation of the ith modal load is 
calculated as  
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If we assume spatial 100% correlation, that means the 
correlation between any two locations (x,y) 
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It is noted that the notations for the modal correlation 
and position correlation are distinguished by normal 
and bold "R". PSD of position correlation is denoted 
by bold letters PSD, which is made different from 
normal letters PSD for modal correlation. Therefore, 
the correlation of the ith modal load can be obtained 
by 
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Then, the PSD of the ith modal load can be obtained 
by 
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