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ABSTRACT

This paper presents the performance analysis and design of aducted propeller for lighter-than-air vehicles. High-
fidelity CFD simulations were undertaken on a model with simplified geometry to quantify the effect of the duct, and
to assess the influence of the blade twist on the ducted propeller performance. It is shown that the duct is particularly
effective for low speed operations, and that the blades withrelatively high twist have better performance over a wide
range of operating conditions. Design of the optimal twist distribution was then attempted, by coupling the flow
solver with a quasi-Newton optimisation method. Flow gradients were provided by a fully implicit adjoint solver for
the RANS equations, which accounts for the turbulence modelcoupling. Results show a 2% reduction in the required
power of the optimised ducted propeller. The degree of approximation introduced by the simplified geometry was
also quantified, by solving the flow for a more realistic geometry and through comparison with available experimental
data.

1 INTRODUCTION

Propellers are excellent in generating propulsive forces for
low-speed aircraft, such as lighter-than-air vehicles (LTVs)
with high efficiency. Their performance can also be aug-
mented by enclosing them in ducts [1], that drive the expan-
sion of their wake and increase the static pressure difference.
The ducts also serve to reduce the noise emission and to pro-
tect the propeller blades. The ideal power reduction at fixed
thrust due to the duct is given by momentum theory [2], and is
a function of the ratioaw between the area of the exit section
of the duct and the propeller disc area. The higher the value of
aw, the higher is the power reduction. In reality, however, the
value ofaw is limited by the adverse pressure gradient inside
the duct diffuser, where flow separation may even take place.
Therefore, the design and optimisation of the propeller duct
can benefit from high-fidelity flow modelling and this target is
pursued in this paper.

A baseline design of a ducted LTV propeller was provided
by Hybrid Air Vehicles Ltd(HAV), which includes the rotor
blades, the duct, and a spinner with simplified axisymmetric
geometry in place of the propulsor piston engine. The perfor-
mance of the baseline design (figure 1a) was studied by solv-
ing the Reynolds-Averaged Navier-Stokes (RANS) equations
with thek-ω turbulence model [3] by means of the HMB2 flow
solver [4, 5]. The effect of the duct was also quantified, by
comparing the predicted thrust and power consumption with
those of the unducted (or “free”) propeller (figure 1b). The

results revealed that the duct allows for an important power
reduction in low speed operations, which often characterise a
significant part of the typical LTV mission.

The sections and twist distribution of the baseline propul-
sor rotor blades are optimised without the duct, and the ques-
tion is whether the design is also optimal for the ducted con-
figuration. The present work focuses on the twist distribu-
tion and, to gain a basic understanding of the twist effect, we
compared the performance of the baseline blade, that has 35◦

twist, with a low-twist blade, having 7◦ twist. The low-twist
blade design was the outcome of an optimisation study for low
speeds, based on a simple panel method. However, the high-
fidelity CFD results indicated that the performance of the high-
twist blade are superior, both at low speed (cruise speed) and
at high speed (dash speed).

In light of these results, an optimisation of the blade
twist distribution with CFD was attempted. The HMB2 flow
solver was coupled with an external optimiser and an in-house
parametrisation software for the blade surface. The compu-
tational mesh is updated at each optimisation cycle using an
advanced deformation algorithm based on Inverse Distance
Weighting (IDW) [6]. To minimise the expensive flow so-
lution evaluations, a quasi-Newton optimisation method was
employed. In particular, the optimiser is based on a Sequen-
tial Least-Squares Quadratic Programming (SLSQP) method
[7], as provided in the software libraryNLopt[8]. The required
flow derivatives with respect to the design variables were com-
puted using the fully implicit adjoint solver implemented in
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(a) Ducted propeller. (b) Free propeller.

Figure 1: Propulsor geometry.

HMB2 [9]. The blade with optimised twist distribution re-
quires 2% less power with respect to the baseline design.

To keep the computational time low, the analysis of duct
and twist effect and the blade twist optimisation were per-
formed on a simplified model of the propulsor. In order to
quantify the impact of the geometry simplification on the pre-
dicted performance, a more realistic model of the propulsor
was also considered. It includes the nacelle enclosing the en-
gine, the air radiators and the oil cooler. Results on the real-
istic model were compared to those on the simplified model,
and also to available thrust and power measurements gathered
during static tests. Very good agreement is observed for the
realistic model results and the experiments, while resultswith
the simplified model show a significant underestimation of the
required power.

The paper is structured as follows. Section 2 describes the
HMB2 base flow and adjoint solvers, and the coupling strat-
egy with the external optimiser. Also, details about the mesh
deformation algorithm are given. In section 3 the numerical
results are presented. The performance of the baseline pro-
peller is firstly analysed, for the ducted and unducted config-
urations. The baseline blade with high-twist is then compared
with the low-twist blade design. The optimisation study with
CFD follows. The optimisation method is first assessed using
an aerofoil drag minimisation test case, and then applied to
determine the blade optimal twist distribution for the ducted
propeller. The simulations for a more realistic model of the
propulsor are also presented, and results are compared to ex-
perimental measurements. Conclusions and final remarks are
given in section 4.

2 NUMERICAL M ETHODS

2.1 The Optimisation Tool Chain

Gradient based optimisation is an efficient and widely used
method for aerodynamic shape optimisation problems, sinceit
minimises the required number of flow solutions. It requires,

however, the flow derivatives with respect to the design vari-
ables, which can be extremely expensive to compute when
high fidelity CFD is employed. An economic way to obtain the
flow gradients with CFD is represented by the adjoint method,
which reduces the cost of flow gradients evaluation to about
twice the cost of the base flow solution, regardless of the num-
ber of design variables.

The HMB2 flow solver embeds a fully implicit adjoint
solver [9], which can be interfaced to any gradient based op-
timisation tool to solve design problems. The current im-
plementation employs a Sequential Quadratic Programming
(SQP) optimisation algorithm [7], as implemented in the soft-
ware libraryNLopt [8]. It represents the objective function as
a quadratic approximation to the Lagrangian and uses a dense
SQP algorithm to minimise a quadratic model of the prob-
lem. It is intended for problems with up to a few hundred
constraints and variables, since the required computer memory
scales with the square of the problem dimension. The SQP al-
gorithm is implemented in a separate tool, and it is interfaced
with HMB2 using files for data exchange.

The mapping between the design space and the shape to
be optimised is problem specific. In aerofoil design, usually
a polynomial basis, such as Chebyshev or Bernstein polyno-
mials, is used to represent the aerofoil upper and lower sur-
faces. For three-dimensional objects (propeller blades, propul-
sor duct, etc.) more complex parametrisations might be re-
quired.

The design optimisation tool chain is described in figure 2.
It can be summarised as follows.

1 The first step is to solve the flow around baseline ge-
ometry of the object under investigation (e.g. aerofoil,
blade, etc.).

2 The cost functionalI (e.g. drag to lift ratio, torque to
thrust ratio, etc.) is evaluated from the flow solution.

3 The adjoint problem is solved to compute the gradient
dI/dα of the cost functional with respect to the design
variablesα.
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Figure 2: Flow chart of the optimisation process.

4 The cost functional and its gradient are fed to the gra-
dient based optimiser, which produces a new set of de-
sign variables, corresponding to a design candidate in
the search direction.

5 An external parametrisation software updates the object
surface.

6 A mesh deformation algorithm computes the new vol-
ume mesh.

7 HMB2 solves the new flow problem and recomputes the
cost functionalI and its gradient dI/dα.

Steps 2–7 are repeated for several design iterations until deter-
mined convergence criteria are met.

2.2 The Flow Solver

The following contains a brief outline of the approach used in
the Helicopter Multi-Block solver version 2.0. The Navier–
Stokes (NS) equations are discretised using a cell-centredfi-
nite volume approach. The computational domain is divided
into a finite number of non-overlapping control-volumesVijk ,
and the governing equations are applied to each cell. Also,
the Navier–Stokes equations are re-written in a curvilinear co-
ordinate system which simplifies the formulation of the discre-
tised terms since body-conforming meshes are adopted here.
The spatial discretisation of the NS equations leads to a setof
ordinary differential equations in real time:

(1)
d

dt
(W ijkVijk) = −Rijk (W ) .

whereW andR are the vectors of cell conserved variables
and residuals respectively. The convective terms are discre-
tised using Osher’s upwind scheme for its robustness, accu-
racy, and stability properties. MUSCL variable extrapolation
is used to provide second-order accuracy with the Van Albada

limiter to prevent spurious oscillations around shock waves.
Boundary conditions are set using ghost cells on the exterior
of the computational domain. At the far-field, ghost cells are
set at the free-stream conditions. At solid boundaries the no-
slip condition is set for viscous flows, or ghost values are ex-
trapolated from the interior (ensuring the normal component
of the velocity on the solid wall is zero) for Euler flow.

The integration in time of equation 1 to a steady-state solu-
tion is performed using a fully implicit time-marching scheme
by:

(2)
W n+1

ijk −W n
ijk

∆t
= −

1

Vijk

Rijk

(

W n+1

ijk

)

,

wheren+1 denotes the real time(n+1)∆t. For steady state
problems, the real time is real time is replaced by a pseudo
time (τ ), that is also used for unsteady problems in the dual
time stepping scheme of Jameson [10]. Equation 2 represents
a system of non-linear algebraic equations and to simplify the

solution procedure, the flux residualRijk

(

W n+1

ijk

)

is lin-

earised in time as follows:

(3) Rijk

(

W n+1
)

≈ Rn
ijk (W

n) +
∂Rijk

∂W ijk

∆W ijk,

where∆W ijk = W n+1

ijk −W n
ijk. Equation 2 now becomes

the following linear system:

(4)

[

Vijk

∆t
I+

∂Rijk

∂W ijk

]

∆W ijk = −Rn
ijk (W

n) .

The left hand side of (4) is then rewritten in terms of primitive
variablesP :

(5)

[(

Vijk

∆t

)

∂W ijk

∂P ijk

+
∂Rijk

∂P ijk

]

∆P ijk = −Rn
ijk (W

n) ,

and the resulting linear system is solved with a GCG (Gen-
eralised Conjugate Gradient) iterative solver [11]. Sinceat
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steady state the left hand side of (5) must become zero, the Ja-
cobian∂R/∂P can be approximated by evaluating the deriva-
tives of the residuals with a first-order scheme for the inviscid
fluxes. The first-order Jacobian requires less storage and, be-
ing more dissipative, ensures a better convergence rate to the
GCG iterations.

The steady state solver for the turbulent case is formulated
and solved in an identical manner to that of the mean flow. The
eddy-viscosity is calculated from the latest values ofk andω
(for example) and is used to advance both the mean flow solu-
tion and the turbulence solution. An approximate Jacobian is
used for the source term by only taking into account the con-
tribution of the dissipation termŝDk andD̂ω, i.e. no account
of the production terms is taken on the left hand side of the
system.

2.3 The Fully Implicit Adjoint Solver

An efficient way to compute the derivatives of the cost func-
tional with respect to design variables, is via solving thesensi-
tivity equationcasted in adjoint form. The underlying idea
is to write explicitly the cost functionalI as a function of
the flow variablesW and of the design variablesα, that is,
I = I(W (α),α). The flow variables are subject to satisfy the
fluid dynamics governing equations (e.g. the Navier–Stokes
equations) written in compact form as

(6) R(W (α),α) = 0.

Formally, taking the derivative ofI with respect toα we ob-
tain:

(7)
dI
dα

=
∂I

∂α
+

∂I

∂W

∂W

∂α
.

By introducing the adjoint variableλ as the solution of the
following linear system:

(8)

(

∂R

∂W

)T

λ = −

(

∂I

∂W

)T

,

equation (7) can be rewritten as:

(9)
dI
dα

=
∂I

∂α
+ λT ∂R

∂α
,

The computational cost of the dual sensitivity problem (8)-(9)
scales with the number of outputs, since the right-hand sideof
(8) depends onI, but it is independent of the input parameters.
The adjoint form of the sensitivity equation is therefore par-
ticularly efficient for aerodynamic optimisation applications,
where usually the number of (output) cost functionals is small,
while the number of (input) design variables is large.

The linear system (8) for computing the adjoint variable is
solved with a fixed-point iteration scheme, where an approxi-
mation of the linear system matrix, with better condition num-
ber, is introduced as a preconditioner to advance the solution at
each iteration [12, 13]. The fixed-point iterative scheme reads:

(10) ĴT∆λn+1 = −

(

∂I

∂W

)T

− JTλn

where

J =
∂R

∂W
, Ĵ =

V

∆t
I+

[

∂R

∂W

]1st

, ∆λn+1 = λn+1−λn.

The preconditionerĴ is the matrix used for the base flow
implicit update (5), and consists of the sum of a stabilising
pseudo-time derivative term and of the first-order residualJa-
cobian (e.g. the Jacobian evaluated using a first-order scheme
for the inviscid fluxes, and having the sparsity pattern induced
by the inviscid equations stencil). The fixed point iteration
(10) is solved using a GCG iterative scheme [11].

The iteration scheme (10) do not require the full exact Ja-
cobianJ , but only the matrix-vector productJTv. The com-
puter code to perform the product is obtained by automatic dif-
ferentiation in reverse mode of the flow steady residual func-
tion [9]. This avoids storingJ , and hence the computation of
sensitivities adds only a small memory overhead to the base
solver.

2.4 Mesh Deformation

To adapt the volume mesh to the surface generated by the
parametrisation software at each optimisation iteration,an ad-
vanced mesh deformation algorithm has been implemented
into the HMB2 solver, based on Inverse Distance Weighting
(IDW) [6]. IDW is an interpolation method that calculates the
values at given points with a weighted average of the values
available at a set of known points. The weight assigned to the
value at a known point is proportional to the inverse of the
distance between the known and the given point, from which
stems the name of the method.

GivenN samplesui = u(xi) for i = 1, 2, ..., N , the in-
terpolated value of the functionu at a pointx using IDW is
given by:

(11) u(x) =



































N
∑

i=1

wi(x)ui

N
∑

i=1

wi(x)

, if d(x,xi) 6= 0 for all i

ui, if d(x,xi) = 0 for somei

where

(12) wi(x) =
1

d(x,xi)p
.

In the above equationsp is any positive real number (called
the power parameter) andd(x,y) is the Euclidean distance
betweenx andy (but any other metric operator could be con-
sidered as well).

The method in its original form tends to become extremely
expensive as the sample data set gets large. An alternative
formulation of the Shepard’s method, which is better suited
for large-scale problems, has been proposed by Renka [14]. In
the new formulation the interpolated value is calculated using
only thek nearest neighbours within theR-sphere (k andR
are given fixed parameters). The weights are slightly modified
in this case:
(13)

wi(x) =

(

max(0, R− d(x,xi))

Rd(x,xi)

)2

, i = 1, 2, ..., k.

4



If this interpolation formula is combined with a fast spatial
search structure for finding thek nearest points, it yields an ef-
ficient interpolation method suitable for large-scale problems.

The modified IDW interpolation formula is used in HMB2
to implement mesh deformation in an efficient and robust
way. The idea is the following: the known displacement of
points belonging to solid surfaces represent the sample data,
while the displacements at all other points of the volume grid
are computed using formula (11) with the weights (13). A
blending function is applied to the displacements, so that they
smoothly tend to zero as the distance from the deforming sur-
face approachesR.

3 NUMERICAL RESULTS

3.1 Effect of the Duct

To model the propulsor, a system of grids is used along with
the sliding mesh method available in HMB2. The sliding grids
allow for the front and rear part of the intake to be meshed
independently of the blades or other parts of the geometry,
making the parameterisation and optimisation of the propulsor
easier. This allows, for instance, to compare the performance
of different blades, or of the ducted and unducted propellers,
without the need to remesh the complete geometry. Moreover,
since the geometry is axisymmetric, only a cylindrical sector
around one blade was meshed, and periodic boundary condi-
tions were used to account for the other blades.

The flow equations were formulated in the rotating refer-
ence frame attached to the blade, in order to reduce the com-
putation of the flow to the solution of a steady problem. This is
obvious in the case of the free propeller. When considering the
ducted case, the duct is rotating with the propeller angularve-
locity, but in the opposite sense, in the blade attached reference
frame. This can be, however, accounted through the boundary
conditions, by imposing this rotational velocity to the bound-
ary faces describing the duct surface. Since the duct geometry
is invariant under rotations around the propeller axis, theflow
can be still modelled as steady problem in the blade reference
frame.

To assess the effect of the duct, we computed the per-
formance of the ducted and free propellers, using the blade
with 35◦ twist. The grid for the ducted and free propellers
are shown in figure 3a and 3b, respectively. The former grid
has 324 blocks and 9.8 million cells, while the latter has 256
blocks and 9.3 million cells.

The flow model and the operating conditions considered
for the CFD simulations are summarised in the following ta-
ble.

Flow equations RANS
Turbulence model k-ω SST
Blade angle (β) 14.1-21.2◦

RPM 1880
Re (=Vtipcroot/ν∞) 3.18 · 106

Mtip 0.70
Advance ratio (J) 0, 0.136, 0.540

In the tableJ denotes the advance ratio of the blade:

(14) J =
V∞

nD
,

whereV∞ is the advancing velocity,n is the propeller rota-
tional speed in revolutions per second, andD is the propeller
diameter. The advance ratioJ = 0.136 corresponds to the
airship cruise speed (20 knots), while the higher advance ratio
J = 0.54 corresponds to the airship dash speed (80 knots).

Figures 4 and 5 show, respectively, the wake visualised
using theQ-criterion (isosurfaceQ = 10−3) and the surface
pressure coefficient (based on the free-stream velocity) onthe
ducted high-twist propeller at advance ratioJ = 0.54 and
blade angleβ = 17.2◦. The blade loading shows the im-
portance of the outboard part of the blades with high suction
produced near 60% of the blade radius. The complex swirling
flow is also well-resolved with the current set of CFD grids.
Figures 6 and 7 compare the flow through the ducted and un-
ducted propellers at the same flight conditions. The differ-
ences in the flow-field are substantial and well-captured by
the simulation. In particular, it is clearly shown how the rear
part of the duct operates as a diffuser, decreasing the propeller
wake speed and increasing the static pressure, so as to induce
a positive contribution to the overall thrust.

The predicted performance of the ducted and free pro-
pellers are given in tables 1 and 2, respectively. The tables
report the propeller thrust and torque in physical units, the
thrust and power coefficients, and the efficiency. The thrust
and power coefficients are defined as:

(15) CT =
T

ρn2D4
, CP =

T

ρn3D5
,

while the efficiency is given by

(16) η = J
CT

CP

.

In static conditions (J = 0), the performance of the ducted
propeller is significantly higher than that of the free propeller.
For instance, with a blade angleβ = 14.1◦ the ducted pro-
peller gives 24% more thrust with 25% less power. At cruise
speed (J = 0.136) the contribution of the duct is still impor-
tant and, forβ = 17.2◦ the ducted propeller gives 10% more
thrust with 22% less power.

When the speed is higher, the positive effect of the duct is
reduced, because the increase of its drag compensates the posi-
tive contribution of the static pressure in the diffuser. Consider,
for example, the flight condition at dash speed (J = 0.54). At
fixed angle of attack, the thrust and the torque of the ducted
propeller are considerably lower, since the acceleration of the
flow at the duct inlet reduces the effective angle of attack ofthe
blade. Therefore, to compare the performance at this speed,
we alter the angle of attack of the ducted propeller blades inor-
der to match the thrust of the free propeller. Comparing tables
1 and 2, and interpolating the performance data, we deduce
that the ducted propeller matches the free propeller thrustfor
β = 20◦. The torque corresponding to this blade angle is only
1% lower than the free propeller value. At this higher advance
ratio the duct is ineffective on the propulsor performance.

To better understand the role of the duct in the thrust gen-
eration, we reported in tables 3–6 the force breakdown of the
ducted and free propellers for cruise speed and for dash speed.
At cruise speed, the duct contribution is 45% of the overall
thrust, and the diffuser effect overcompensates the duct drag
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(a) Ducted propeller grid. (b) Free propeller grid.

Figure 3: Propulsor grids.

Figure 4: Visualisation of the ducted propeller wake using
theQ-criterion (J = 0.54, β = 17.2◦).

Figure 5: Distribution of the pressure coefficient on the
ducted propeller (J = 0.54, β = 17.2◦).
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Figure 6: Distribution of the axial velocity in the verti-
cal symmetry plane of the ducted propeller (J = 0.54,
β = 17.2◦).
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Figure 7: Distribution of the axial velocity in the ver-
tical symmetry plane of the free propeller (J = 0.54,
β = 17.2◦).

force and the reduced effective angle of attack of the propeller
blades. At dash speed the contribution is reduced to 22% and
it is barely sufficient to balance the negative effects. For higher
speeds the duct is detrimental to the propulsor performance.

3.2 Analysis of the Twist Effect

The propulsor analysed in the previous section is equipped
with rotor blades of 35◦ twist. Their twist distribution was
designed for the free propeller, and it is therefore interesting

to verify if it is also optimal for the ducted configuration. To
better understand the effect of the blade twist on the propulsor
performance, and new set of blades was considered, having
the same sectional shape but a lower twist value of 7◦. This
low-twist blade design resulted from a simplified analysis of
the ducted propeller based on a panel method, aimed at max-
imising the performance at low speed.

The thrust and torque obtained with CFD for the ducted
propeller with low-twist blades atβ = 17.2◦ are given in ta-
ble 7. The comparison with the high-twist blade results of
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J β [◦] Thrust [N] Torque [Nm] CT [-] CP [-] η [-]

0.000 14.1 8045 782 0.195 0.049 0.00
0.000 17.2 10197 1127 0.247 0.070 0.00
0.136 17.2 7843 1107 0.190 0.070 0.37
0.540 17.2 1970 485 0.048 0.030 0.85
0.540 19.2 3055 772 0.074 0.048 0.83
0.540 20.2 3636 934 0.088 0.059 0.81
0.540 21.2 4242 1109 0.103 0.070 0.80

Table 1: Computed performance of the ducted propeller with high-twist blade.

J β [◦] Thrust [N] Torque [Nm] CT [-] CP [-] η [-]

0.000 14.1 6501 1037 0.157 0.065 0.00
0.136 17.2 7107 1381 0.172 0.087 0.27
0.540 17.2 3492 903 0.085 0.057 0.81

Table 2: Computed performance of the free propeller with high-twist blades.

Part Thrust [N] Torque [Nm]

Blades 4276 1073
Spinner 27 0
Duct 3540 3
Total 7843 1075

Table 3: Force breakdown on the ducted propeller
(J = 0.136, β = 17.2◦).

Part Thrust [N] Torque [Nm]

Blades 7147 1382
Spinner -40 0

Total 7107 1382

Table 4: Force breakdown on the free propeller
(J = 0.136, β = 17.2◦).

Part Thrust [N] Torque [Nm]

Blades 2808 933
Spinner 39 -1
Duct 789 2
Total 3636 934

Table 5: Force breakdown on the ducted propeller
(J = 0.54, β = 20.2◦).

Part Thrust [N] Torque [Nm]

Blades 3484 904
Spinner 8 -1

Total 3492 903

Table 6: Force breakdown on the free propeller
(J = 0.54, β = 17.2◦).

J β [◦] Thrust [N] Torque [Nm] CT [-] CP [-] η [-]

0.136 17.2 7841 1233 0.190 0.077 0.33
0.540 17.2 1488 457 0.036 0.029 0.68

Table 7: Computed performance of the ducted propeller with low-twist blades.

table 1 reveals that the efficiency of the low-twist blades is
lower both at cruise and dash speeds. These results contradict
those obtained with the simple panel method, and highlight the
necessity of using high-fidelity CFD to predict accurately the
performance of a ducted propeller.

The dependence of a ducted propeller performance on the
blade twist was also evidenced in previous works (see, for in-
stance, [15]), which show that an outboard bias of the blade
load leads to a higher propulsive efficiency. In light of these
results, an optimisation of the blade twist distribution was at-
tempted, using a gradient based method coupled to the HMB2
flow solver. This is described in the next section.

3.3 Optimisation of the Ducted Propeller

The performance of a ducted propeller depends mainly on the
blade geometry and on the expansion ratio of the duct. But

there are also other factors that might influence the perfor-
mance, such as

(a) the shape of the duct diffuser, which needs to be de-
signed to avoid separations due to the adverse pressure
gradient;

(b) the shape of the duct inlet lips, whose design determines
the behaviour in off-design working conditions such as,
for instance, when the flow is not perfectly axial;

(c) the clearance between the blade tip and the duct inner
surface, which affects the blade tip losses;

(d) the blockage induced by non-aerodynamic parts, such
as purely structural component, engine, cooling devices,
etc.
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Figure 8: History of the aerofoil force coefficients during the optimisation cycles.
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Figure 9: Comparison of the pressure coefficient distribution around the optimised aerofoil (colors) and around the original (black
lines). The optimised aerofoil is drawn in red, while the baseline aerofoil is drawn in black.

In this optimisation exercise we focused on the blade geom-
etry, in particular the blade twist distribution. However,the
developed method is fairly general and shall be applied in a
future work to include in the optimisation problem the duct
shape and some of the listed secondary factors.

3.3.1 Assessment of the Optimisation Method

The optimisation method described in section 2 has been
assessed by solving a drag minimisation problem for the
RAE2822 aerofoil in transonic flight (M = 0.75) and zero
angle of attack, with nonlinear constraints imposed on the lift,
moment and thickness. The statement of the problem reads as

follows:

(17)































MinimiseCD

subject to

CL = 0.42,
−0.120 < CM < −0.110,
tx=0.33 > 0.13,

wheretx=0.33 denotes the thickness of the aerofoil at 33% of
the chord. The aerofoil upper and lower surfaces have been
parametrised with a function of the following form (see [16]):

(18) y(x) = C(x)S(x) + xyTE, x ∈ [0, 1],

wherex = 0 andx = 1 are, respectively, the coordinate of
the leading and of the trailing edge along the chord, andyTE is
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Figure 10: Pressure equation adjoint variable of the thrust
coefficientCT .

Figure 11: Pressure equation adjoint variable of the power
coefficientCP .

they-coordinate of the trailing edge (yTE 6= 0 only for a thick
trailing edge). The termC is the so-calledclass function:

(19) C(x) = xN1(1− x)N2 ,

whereN1 = 0.5 andN2 = 1 for an aerofoil with rounded
nose and pointed aft end. The termS is instead theshape
functionand is usually represented by a polynomial. In the
present workS is the sum of Bernstein polynomials of order
n:

(20) S(x) =

n
∑

r=1

αrKr,nx
r(1− x)r ,

with

(21) Kr,n =

(

n
r

)

=
n!

r!(n − r)!
.

The coefficientαi, i = 1, . . . , n, of the polynomial expansion
determine the surface shape.

To parametrise the aerofoil shape, we considered Bernstein
polynomials of order 8 for the upper and lower surfaces, and a
total of 16 design variables. The initial values of the polyno-
mial expansion coefficients were determined by solving a min-
imisation problem to match the RAE2822 geometry. The op-
timisation loop converged after 15 cycles, when the cost func-
tion relative variation dropped below10−3. The history of the
force coefficients is shown in figure 8. The constraint on the
lift and on the moment coefficients is satisfied, and the drag is
reduced by 30%. Figure 9 shows a comparison between the
pressure coefficient distribution around the optimised andthe
original aerofoil, from which one can infer that the drag reduc-
tion is obtained by flattening the upper surface of the aerofoil,
that induces a reduction of the shock strength.

3.3.2 Application to Blade Twist Optimisation

The ducted propeller with high-twist blades at the LTV cruise
speed (J = 0.136) and blade angle of attackβ = 17.2◦ is
now considered. The baseline performance of the propulsor
in these conditions are listed in table 1, from which we get

CT = 0.190 andCP = 0.070. The optimisation problem thus
reads:

(22)















MinimiseCP

subject to

CT = 0.190.

The shape of the duct is fixed, as well as the shape of the blade
sections. The only permitted modification to the blade geom-
etry is a perturbation of the initial twist distribution. This per-
turbation is described by a Bernstein polynomial expansionof
ordern:

(23) ∆θ(ξ) =

n
∑

r=1

αrKr,nξ
r(1− ξ)r,

whereKr,n is given by (21), andξ is the blade spanwise nor-
malised coordinate, which has value0 in correspondence of
the rotation axis and value1 at the blade tip.

The gradients of the thrust and power coefficients with re-
spect to the design variablesαi, i = 1, . . . , n, were computed
using the fully implicit adjoint solver of HMB2. Figure 10
and 11 show, respectively, the distribution of the adjoint vari-
able of the thrust and power coefficients relative to the pressure
equation for the baseline design. Even if a direct interpretation
of the adjoint variable is not easy, by equation (9) we can in-
fer that modifications to surface regions with higher absolute
values of the adjoint variable shall affect more the output func-
tional (CT or CP ). On the other hand, regions with small ab-
solute values of the adjoint variable have negligible influence
on the output functional.

We used 8 coefficients for the parametrisation (23), and
each coefficient was constrained within the range(−5◦, 5◦).
The optimisation loop converged after 26 cycles. The history
of the power and thrust coefficients during the optimisation
cycles is shown in figure 12. The constraint on the thrust is
satisfied within a tolerance of10−3, and the power require-
ment of the propulsor has been reduced by 2%. This is a
modest improvement over the baseline design, and we deduct
that the original 35◦ twist is nearly optimal for the ducted pro-
peller configuration. Further improvement of the performance
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Figure 12: History of the propulsor force coefficients during the optimisation cycles.
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Figure 13: Pressure coefficient distribution over the base-
line blade surface (J = 0.137, β = 17.2◦).
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Figure 14: Pressure coefficient distribution over the opti-
mised blade surface (J = 0.137, β = 17.2◦).

Figure 15: Comparison of baseline (gray) and optimised (red) blade surfaces.

may be achieved including the duct shape in the optimisation,
which is the subject of an future work.

Figures 13 and 14 show, respectively, the pressure coef-
ficient distributions on the baseline and the optimised blades.
The latter is more loaded at the tip section and off-loaded in
the mid sections. Figure 15 compares the baseline and opti-
mised blade surfaces, and shows how the local pitch has been
increased next to the blade tip and at the root, and decreased
in the inner sections between 30% and 90% of the blade span.

3.4 Simulations with Realistic Geometry

The CFD simulations for the duct and blade twist assessment,
and for the blade twist optimisation, were performed on a sim-

plified model of the real propulsor. To verify the degree of
approximation introduced by such simplifications of the ge-
ometry, a more realistic model of the propulsor is now consid-
ered, which includes the nacelle enclosing the engine, the air
radiators and the oil cooler (see figure 16).

The CFD grid for this model counts 1171 blocks and 33.5
million cells. To save computational time, the flow problem
was formulated in the blade attached reference frame and mod-
elled as a steady flow. As was done for the simplified geom-
etry, the relative motion between the propeller and the fixed
parts is completely accounted for through the boundary condi-
tions.

The radiators and coolers were included in the CFD com-
putations as infinitely thin walls, by setting up a solid wall
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Figure 16: Ducted propeller with nacelle, radiators and
cooler.

Figure 17: Distribution of the axial velocity in a horizon-
tal plane of the ducted propeller with nacelle, radiators and
cooler (J = 0, β = 14.1◦).

Figure 18: Propulsor test rig (SourceHybrid Air Vehicles).
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Figure 19: Comparison between predicted and measured
power/thrust curve (normalised).

boundary at the interface between two adjacent grid blocks
[17]. The location of these thin walls, which must have rect-
angular shape, is specified by giving their corner points coor-
dinates. The flow solver HMB2 automatically localises the set
of block boundary cells that approximates best the rectangular
region and flags this cells as solid boundaries.

Experimental data is available from static tests of the
propulsor conducted byHybrid Air Vehicleson a dedicated
test rig (see figure 18). The test conditions were replicated
with CFD simulations using the simplified geometry of figure
1a and the more detailed model of figure 16. The flow model
and the considered test conditions are listed in the following
table.

Flow equations RANS
Turbulence model k-ω SST
Blade angle (β) 14.1◦

RPM 940-1880
Re (=Vtipcroot/ν∞) 1.59-3.18 · 106

Mtip 0.35-0.70
Advance ratio (J) 0

The complex flow through the propulsor is shown in fig-

ure 17, that allows to appreciate the blockage introduced by
the nacelle, the radiators and the cooler. The predicted perfor-
mance, using both the simplified and the realistic model, are
compared to the experimental measurements in figure 19. The
plot reveals the importance of using a more detailed represen-
tation of the real geometry. Indeed, there is a good agreement
between the CFD results for the realistic model and the ex-
periments, while the simplified model significantly underesti-
mates the required power. Therefore, this realistic model will
be used to assess the result of the blade twist optimisation,to
verify that the obtained performance improvement is valid also
for the real propulsor.

4 CONCLUSIONS

This paper presented the analysis and design of a ducted pro-
peller by means of CFD methods. The numerical results ob-
tained with a simplified model prove the effectiveness of the
duct for low speed operation, where it significantly increases
the overall propulsor efficiency. The effect of the blade twist
on the performance was then analysed, and results indicate that
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blades with load more biased outboard operate with higher ef-
ficiency over a wide range of operating conditions. Optimi-
sation of the twist distribution was attempted, using a quasi-
Newton method and an adjoint solver to provide the required
gradients. A 2% decrease in the power requirement was ob-
tained. Simulations based on a more realistic model of the
propulsor, that includes engine and cooling devices, were also
performed, and results are shown to agree well with available
experimental tests. Future work will consider the duct shape
within the optimisation process, which is believed to poten-
tially yield a further reduction of the power consumption. In
addition, the optimised propeller performance will be verified
using the realistic model.
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