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Non-linear dynamics phenomena have become important for various rotorcraft motions. 
Manoeuvrability of a helicopter in critical flight regimes involves non-linear aerodynamics 
and inertial coupling. Dynamical systems theory provides a methodology for studying non­
linear systems of ordinary differential equations. Bifurcation theory is a part of that theory 
which is considering changes in the stability lead to qualitatively different responses of the 
system. These changes are called bifurcations. Several papers can be found in which 
bifurcation theory has been applied to analyse the equations of aircraft's motion. In this paper 
a study is presented of the critical flight regimes dynamk of a helicopter. Such dynamics ls 
non-linear and therefore it is evident that bifurcation theory can be used in analysis. The 
equations of motion used in this investigation assumed a "individual blade" rotorcraft model. 
Results from dynamical systems theory were used to predict the nature of the instabilities 
caused by bifurcations and the response of the rotorcraft after a bifurcation was studied. 

1. INTRODUCTION 

Investigations of controlled flight of 
a helicopter during extreme flight conditions and 
breaking through various limits of usage are of 
great cognitive and practical importance. Such 
investigations consist of transformations of the 
rotorcraft through its functional limits. This 
produces the unique set of information about the 
rotorcraft behaviour, effects correlation, mutual 
limits configuration, enabling the rotorcraft to 
improve safety and widens designed range of usage. 

In flight battle areas, military rotorcraft flies 
close to the ground to utilise the surrounding 
terrain, vegetation, or manmade objects. The 
obstacle-avoidance manoeuvres are repeatedly 
realised in extreme, limiting flight conditions. Such 
manoeuvres are jointed with a number of 
singularities, including unexpected rotorcraft 
motion. As result of them it is pssible faulty pilot's 
action. Therefore it is necessary to investigate 
rotorcraft flight phenomena in extreme conditions. 

In the present paper a non-linear dynamic 
model of a rotorcraft is considered which enables to 
dctennine the helicopter's motion. It is shown 11], 
[2], [3] that an "individual blade" rotorcraft model, 
including a correct representation of the rotor­
engine drive train, is required to adequately predict 
rotorcraft response for aggressive manoeuvres. It is 

assumed tl>at the helicopter fuselage is a rigid body 
and the motion of rigid blades about flap hinges, 
lead-lag hinges and axial hinges is considered, 
while the tail rotor is a linear model using 
strip/momentum theory with a uniformly distributed 
inflow. Simplified model of vortex field is applied 
and spatial structure of tip vortex trajectories is 
taken into consideration. Unsteady aerodynamics 
for prediction of rotor blade loads is included, and 
the ONERA type stall model is used. 

Non-linear dynamics of a helicopter motion 
have become the subject of many works in the 
literature. The purpose of this approach is to 
evaluate tl>e risk of helicopter control loses using 
the continuation methods and bifurcation theory. 
Continuation methods are numerical techniques for 
calculating the steady states of systems of ordinary 
differential equations of motion. Those methods are 
used to study aircraft roll-coupling instabilities and 
high angles of attack instabilities [4], [5]. Other 
works have used continuation methods and 
bifurcation theory to study the non-linear dynamics 
of aircraft model that includes unsteady 
aerodynamics coefficients [6], [7], [8]. 

In the present paper, after a brief description of 
the methodology and associated procedures, some 
flight cases such as "hump witch snatch up" are 
studied by means of checking the stability 
characteristics related to unstable equilibria. 
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Numerical simulations were used to verify the 
predictions. ''Hump witch snatch tip" was studying 
to observe chaos phenomenon in post stall 
manoeuvres. The realistic non-linear "individual 
blade" helicopter model my lead to great difficulties 
for flight analysis when the motion is quasi periodic 
or chaotic. The results from dynamics systems 
theory can be used to predict the nature of the 
instabilities caused by the bifurcations and the 
response of the helicopter after a bifurcation can be 
encountered. 

2. THEORETICAL BACKGROUND 

Dynamical systems theory provides 
a methodology for studying systems of ordinary 
differential equations. The first step in analysing 
a system of non-linear differential equations, in the 
dynamical system theory approach, is to calculate 
the steady states of the system and to investigate 
their stability. Steady states of a system can be 
found by setting all time derivatives equal zero and 
solving the resulting set of algebraic equations. The 
Hartman-Grobman theorem [9] provides that the 
local stability of a steady state can be determined by 
linearizing the equations of motion about the steady 
state and calculating t11e eigenvalues. A steady state 
is locally stable if the real parts of all the 
eigenvalues of the linearized system are negative. If 
the real part of any eigenvalue of the linearized 
system is positive, the steady state is locally 
unstable. In the neighbourhood of a steady state the 
system will be attracted to the steady state if the 
steady state is stable and repelled from the steady 
state if the steady state is unstable. 

When the linearized system is non-singular, 
the implicit function theorem proves that the steady 
states of the system are continuos function of the 
parameters of this system [10]. Thus it can be 
stated, that tl1e steady states of the equations of 
motion for rotorcraft are continuos functions of tl1e 
controls deflections. Stability changes can occur as 
t11e parameters of the system are varied in such 
a way that the real parts of one or more eigenvalues 
of the linearized system change sign. Changes in 
the stability of a steady state lead to qualitatively 
different responses for the system and are called 
bifurcations. Stability boundaries can be determined 
by searching for steady states, which have one or 
more eigenvalues with zero real parts. 

There are many types of bifurcations and each 
has different effects on the aircraft response. 
Qualitative changes in the response of the aircraft 
can be predicted by determining how many and 

what types of eigenvalues have zero real parts at the 
bifurcations point. Bifurcations for which one real 
eigenvalue is zero lead to the creation or destruction 
of two or more steady states. Bifurcations for vvhich 
one pair of complex eigenvalues has zero real parts 
can lead to the creation or destruction of periodic 
motion. Bifurcations for which more than one real 
eigenvalue or more than one pair of complex 
eigenvalues has zero real parts lead to very 
complicated behaviour. 

2. L Bifurcation Theorv 

For steady states of rotorcraft motion, very 
interesting phenomena appear when even if one 
negative real eigenvalue crosses the imaginary axis 
when control vector varies. Two cases can to be 
considered. 
• When the steady state is regular, i.e. when the 
implicit function theorem \VOrks and the 
equilibrium curve goes through a limit point. It 
should be noted that a limit point is stmcturally 
stable under uncertainties of the differential system 
studied. 
• When the steady state is singular. Several 
equilibrium curves cross a pitchfork bifurcation 
point, and bifurcation point is structurally unstable. 
It breaks in limit points under uncertainties. 

If a pair of complex eigenvalues cross the 
imaginary axis, when control vector varies, Hopf 
bifurcation appears. Hopf bifurcation is another 
interesting bifurcation point. After crossing this 
point, a periodic orbit appears. Depending of the 
nature of nonlinearities, this bifurcation may be sub­
critical or supercritical. In the first case, the stable 
periodic orbit appears (even for large changes of the 
control vector). In the second case the amplitude of 
the orbit grows in portion to the changes of the 
control vector. 

Other domain of interest concerns the 
behaviour of tl1e system when periodic orbits loose 
their stability. Three possibilities can to be 
concerned in this case: 
• A real eigenvalue crosses tl1e point + L It IS 

appeared periodic limit points in this case. 
• A real eigenvalue crosses ilie point - L It is 
occurred a period doubling bifurcation in this case. 
In the vicinity of this point, the stable periodic orbit 
of period T becomes unstable, and a new stable 
periodic orbit of period 27' appears. This type of 
stability loss conduct to chaotic motion. 
• Two conjugate eigenvalues leave the unit circle. 
Motion lines on stable or unstable tours surround 
ilie unstable orbit after this case of bifurcation. 
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Gluckenheimer and Holmes [9], Ioos and 
Joseph [10] and Keller [II] have provided a 
thorough introduction to the Bifurcation Theory. 

2.2. Continuation Methods 

Continuation methods are a direct result of the 
implicit function theorem, which proves that the 
steady states of a system are continuos functions of 
the parameters of the system a! all steady states 
except for steady states at which the linearized 
system is singular. The general technique is to fix 
all parameters except one and trace the steady states 
of system as a function of this parameter. If one 
steady state of the system is known, a new steady 
state can be approximated by linear e>.trapolation 
from the known steady state [8]. The slope of the 
curve at the steady state can be determined by 
taking the derivative of the equation given by 
setting all time derivatives equal to zero. If two 
steady states are known, a new steady state can be 
approximated by linear extrapolation through the 
two known steady states [8]. The stability of each 
steady state can be determined by calculating the 
eigenvalues of the linearized system. Any changes 
in stability from one steady state to the ne>.t will 
signify a bifurcation. 

3. NON-LINEAR EQUATIONS OF MOTION 

The purpose of this work has been to use 
bifurcation theory to analyse the equations of 
motions of a helicopter. This work concentrated on 
the high angle of attack dynamic of a helicopter. 
Mathematical model describing the helicopter's 
flight can be defined in several ways i.e. from 
classical mechanics or from anal)tical mechanics 
[13], [14]. 

A blade element model was used to determine 
ti1e main rotor's motion and loads. The coupled 
equations of motion which involve the main rotor 
and body degrees of freedom are solved 
simultaneously, as present in detail in Ref. [14]. 
The blade element rotor model, in addition to 
represent non-linear, unsteady aerodynamics, 
enables correct representation of the flight dynamics 
of helicopter. 

Equations of dynamic equilibrium of forces 
and moments have been determined in the system 
co-ordinates fixed with the fuselage and the systems 
of co-ordinates fixed with rotor blades. Detailed way 
of determining of these equations can be found in 
[13] and [14]. Finally it is obtained set of 10+2n (n­
number of main rotor blades) non-linear differential 

equations with periodic coefficients which can be 
presented in the fonn: 

X=f(X,S) (I) 

Where X is the state vector: 

X=[u,v,w,p,q,r,/31, .. /Jn,sl•·/;nJ2, )r (2) 

lfl1 , .. lfl", fJ1 , . . /3", s1 , ... 1;", e,, <P,, 'F, 
u, v, w are linear velocities of the centre of fuselage 
mass in the co-ordinate system fixed with the 
fuselage, p, q, r are angular velocities of the 
fuselage in the same co-ordinate system~ ee. (/)1!1 'Fe 
are pitch, roll and yaw angles of the fuselage, 
f3, - i-th blade flap motion about flap hinge 
Si - i-th blade lead-lag motion about lead-lag hinge. 
S is the control vector: 

S = [B0,K,7J,¢r Y or S = [B0A,B2,¢r Y (3) 

Where: 80 is angle of collective pitch of the main 
rotor, K is control angle in ti1e longitudinal motion, 
7] is control angle in the lateral motion and ¢r is 
angle of collective pitch of the tail rotor; B1, fh - are 
angles of cyclic pitches of the main rotor: 

81 =Ksinljl0 +7JCOSlflo (4) 

B2 = K cos lfl 0 -7] sin lfl 0 

Where Vlo is a retardation angle of cyclic pitch 
control. 

4. AERODYNAMIC FORCES AND MOMENTS 

Precise describing of aerodynamic forces and 
moments found in equations of motion is 
fundamental source of difficulties. In each phase of 
flight dynamics and aerodynamics influence each 
oti1er, which disturbs the precise mathematical 
description of ti10se processes. The requirements for 
method on aerodynamic load calculations stem both 
from flow environment and from algorithms used in 
analysis of helicopter flight. The airframe model 
consists of the fuselage, horizontal taiL vertical tail, 
landing gear and wing (if applicable). The fuselage 
model is based on wind tunnel test data (as function 
of angle of attack a and slip angle /3). The 
horizontal tail and vertical tail are treated as 
aerodynamic lifting surfaces with lift and drag 
coefficients computed from data tables as functions 
of angle of attack a and slip angle f3. The tail rotor 
is linear model using strip-momentum theory with 
an uniformly distributed inflow. The effects of rotor 
wash on the airframe are included in the model. 
The technique used provides the essential effects of 
increased interference velocity with increased rotor 
load and decreased interference as the rotor wake 
deflects reward with increased forward speed [14]. 
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4.1. Blade Aerodynamics 

Aerodynamic data is for a NACA 23012 airfoil 
in the range +/-23' and the compressibility effects 
have been included. The data have been blended 
with suitable low speed data for the remainder of 
the 360' range to model the reversed flow region 
and fully stalled retreating blades. Dynamic stall 
effects have been included. 

4.2. Deep Stall Phenomenon 

Tenn ,deep stall" means phenomenon of 
increasing of lift coefficient CL over the value CLmw: 
achieved in static airflow conditions. Modelling of 
airflow on dynamic stall conditions belongs to very 
involved problems. It is not always possible or 
profitable to use CFD methods. Therefore dynamic 
stall phenomenon was a subject of many 
experimental works. As result of them factors 
affecting this phenomenon were identificated. 

Semi-empirical methods that usc differential 
equations for prediction of unsteady aerodynamic 
loads are one of efficient methods that predict the 
unsteady aerodynamic loads. The form and 
coefficients of these equations arc determined by 
tcchniq ues of parameter identification. The basic 
model was developed by ONERA for loads at rotor 
blade section in stall conditions. The ONERA 
model is a semi-empirical, unsteady, non-linear 
model which uses experimental data to predict 
aerodynamic forces on an oscillating airfoil which 
experiences dynamic stall [15], [16]. State variable 
formulations of aerodynamic loads to allow use 
existing codes for rotorcraft flight simulation. Non­
linear relations describing relations between 
unsteady lift drag and pitching moment and angle 
of attack can be establish by following set of 
differential equations (cf. [17], [18]): 

Co= Co" +Co, 

C0, = s0a +k,,(J +Co, 

Co, +.:toCo, = 

(5) 

(6) 

= ;to~o0 a+cr0ii)+a0 ~00 a+cr0ii) (7) 

c0, +2d0w0c0, +w6(t+d<~):::0, = 

_ 2 ( 2 f 8LIC0 . ) 
--w0 l+d0 \LIC0 +e0 a;;-a 

(8) 

C0 represents either the relevant non-dimensional 
lift force coefficient CL, drag coefficient C0 or pitch 
moment coefficient Cm. The coefficients o-0, A0, o-0 , 

d 0, w0 and so forth, of these equations must be 

determined empirically by parameter identification 
techniques. Narkiewicz [ 17] published numeric 
v~lu~s of those parameters obtained for generic 
atrfml data. These equations alone, when used in 
the linear region, provide a full accounting of the 
unsteady aerodynamic effects including time lag 
and flow inertia effects. These effects are analogous 
to the Theodorsen function in two-dimensional 
oscillatory aerodynamics. Differential equations 
account for arbitrary airfoil motion and model the 
history of motion, which is important in unsteady 
case. The ONERA deep stall model was chosen for 
adaptation to rotorcraft flight analysis. 

5. STEADY STATE FLIGHT CONDITIONS 

Bifurcation Theory is a set of mathematical 
results, which aims at the analysis and explanation 
of unexpected modifications in the asymptotic 
behavwur of non-linear differential systems when 
parameters are slowly varying. 

For a fixed control vector S, two types of 
asymptotic state are commonly encountered. The 
following relation gives the first: 

f(X.S) = 0 (9) 

This relation is named steady state. The second 
relation is given by the equation: 

T 

x(r)=x(o)+ Jr(x,s}:it (IO) 
0 

Starting with an approximation of an 
asymptotic state, for a given value of parameters, 
the code detennines, by a continuation process, the 
curve X(S) solution of a set of non-linear algebraic 
equation (11) which computation case dependant. 

Equilibrium points :f(X, S) = 0 
Lumt pomts : f(X, S) = 0 

A=O 
Hopfpoints :f(X,S)=O (11) 

A1•2 = ±2i:dT 

Periodic orbits • x(r) = x(o )+ s; r(x, s )dt 

Continuation process assumes that all functions for 
(11) are continuity and derivability. 

There are several continuation methods 
algorithms. In the present work the algoritlm1 
developed by Doedel and Kernevez [12], which is 
based on the work of Keller [ 11] is used. 

6. RESULTS 

All the results presented in this section refer to 
a PZL ,Sokol" helicopter in forward flight and 
a gross weight 6500 kg, with tiJC control system 
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turned of (bare airframe configuration). Some 
results of computation are presented in titis paper. 

The rotor blade stall affects the lintiting 
condition of operation of the helicopter. Stall on a 
helicopter blade lintits the high-speed possibilities 
of the helicopter. This is understandable, when one 
considers that the retreating blade of the helicopter 
rotor encounters lower velocities as tile fonvard 
speed is increased. The retreating blade must 
produce its portion of the lift, ti1erefore, as tile 
velocity decreases with fonvard speed, the blade 
angle of attack must be increased. It follows ti1at at 
some fonvard speed the retreating blade will stall. 
In forward flight tile angle of attack distribution 
along the blade is far from uniform, so ti1at it must 
be expected that some portion of tile blade will stall 
before rest. 

Figures 1-10 show the steady states ofti1e PZL 
"Sokol" as a function of longitudinal swash plate 
deflection K for a collective pitch of 18° and zero 
lateral swash plate deflection. Those figures show, 
timt multiple steady states exists for most 
longitudinal swash plate deflections. For example, a 
vertical line representing 0 deg of swash plate 
deflection intersects tiuee steady states. All of them 
are stable, so tile helicopter could exhibit either of 
these three steady states for 0 longitudinal swash 
plate deflection. 

One stable steady state at 0 longitudinal swash 
plate deflection represents the trim configuration 
(p~q~F 'P=<!F=O). The oti1er two stable steady 
states represent humps. The segment of unstable 
steady states containing the trim conditions between 
-1,8 and -5,2 deg, because of two saddle-node 
bifurcation that occur at longitudinal swash plate 
deflection of -1,8 and -5,2. 

For example, if ti1e helicopter is trimmed at an 
collective pitch 18 deg the steady-state main rotor 
angle of attack will be given by the angle of attack 
at 0 longitudinal swash plate deflection contained of 
in the curve of low-angle-of-attack steady states. If 
the swash plate deflection is increased slowly 
enough, the steady state of the helicopter will be 
given by the curve of stable low-angle-of-attack 
steady states up to a longitudinal swash plate 
deflection of -1,8 deg. For longitudinal swash plate 
deflections smaller then -1,8 deg, the steady states 
that are at low-angles-of-attach do not exist, so the 
helicopter jump to a new stable motion. This new 
motion could be either a stable steady state or some 
type of time dependent motion. Figures ll-20 show 
a simulation of the manoeuvre occurred in this 
unstable region- "hump witch snatch up". 
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Fig. 1 Steady states for longitudinal manoeuvres­
variation B(K), B- saddle-node bifurcation 
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Fig. 2 Steady states for longitudinal manoeuvres­
variation lf/(K), B- saddle-node bifurcation 
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Fig. 4 Steady states for lougitudiua! manoeuvres-­
variation q(K), B- saddle-node bifurcation 
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Fig. 5 Steady states for longitudinal manoeuvres­
van·ation r(x:), B- saddle-node bifurcation 
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Fig. 6 Steady states for longitudinal manoeuvres­
variation w(K}, B- saddle-node bifurcation 
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variation Vc{K), B- saddle-node bifurcation 
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Fig. 8 Steady states for longitudinal manoeuvres­
van·arion ar{K), B- saddle-node bifurcation 
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Fig. 9 Steady states for longitudinal manoeuvres­
variation i;(K), B- saddle-node bifiu·cation 
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Fig. 10 Steady states for longitudinal manoeuvres-
variation i;{K), B -saddle-node bifurcation 

The hump of a helicopter realised with high 
entry velocity is characterised by following 
singularity. When the pilot pulls the stick., 
helicopter increase angle of attack and normal load 
factor. After pushing the stick, in consequence of 
stall of main rotor blades, the nonnal load factor 
increased. This phenomenon is called as "hump 
with snatch up" of the helicopter [3]. Figures 11-21 
show the results of numerical simulation of this 
instability. Fig. 11 shows variation of pitch angle 
and angular pitching velocity corresponding to 
pilot's action described above. The pitch angle of 
the helicopter increased during the first second of 
motion. This is typical helicopter's reaction. 
Usually, if the swash plate is deflected backwards, 
the pitch angles of the helicopter decreased. But in 
the case of described instability, the pitch angle 
increased. This is significant singularity of 
helicopter's hump. That hump becomes unstable 
because of saddle-node bifurcation. 

The phase plots of lagging and flapping motion 
of main rotor blade are shown in Figs 16 and 18. 
Those figures show a typical chaotic oscillation 
(similar to chaotic motion of stalled rotor blade, see 
Tang and Dowell [18], [19], [20]). 
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Fig. 11 Variation of pitch angle, pitching rate and 
longitudinal swash plate deflection 
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Fig. 12 Variation of main rotor angle-of-attack 
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Fig. 13 Variation of pitch yaw and roll rates 
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Fig. 14 Variation of pitch yaw and roll angles 
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Fig. 15 Variation the lag angle 

Fig. 16 Phase plane plot of lag motion 
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Fig. 17 Variation flap angle 
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Fig. 18 Pphase plane plot a/flapping motion 
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Fig. 19 Phase plane plot of the helicopter pitch motion 
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Fig. 20 Phase plane plot of the helicopter roll motion 
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Fig. 21 Phase plane plot of the helicopter yaw motion 
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