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AN OBJECT-ORIENTED FRAMEWORK FOR BLADE ELEMENT ROTOR
MODELLING AND SCALABLE FLIGHT MECHANICS SIMULATION

Mike Theophanides™ and Daniel Spira, CAE Inc., Montreal, Canada

Abstract

A novel object-oriented rotor and aerodynamic modelling framework was recently developed by CAE and
deployed on a Handling Qualities Simulator. This framework fulfils two goals: it provides an environment for
the development of flight mechanics simulations that are easily reconfigurable for rapid model prototyping;
and it provides a unified structure for flight mechanics models of scalable fidelity from engineering to training
simulation, ranging from faster-than-real-time, interactive generic desktop simulation to pilot-in-the-loop
simulators for handling qualities studies, Level D and mission rehearsal applications. This paper describes
the new framework, example applications and its implementation on the Handling Qualities Simulator.

NOTATION

ACL Aerodynamic Component Library

AFCS Advanced Flight Control System

API Application Programming Interface

DLL Dynamic-Link Library

DOF Degree of Freedom

HCL Helicopter Component Library

HQS Handling Qualities Simulator

10 Input - Output

OO-BERM  Object-Oriented Blade Element Rotor
Model

XML Extensible Markup Language

g Gravitational acceleration

L, Roll damping derivative

Ls,, Roll control derivative

P Roll rate

v Lateral velocity

Ot Lateral cyclic control position

¢ Roll attitude

1. INTRODUCTION

Object-oriented design facilitates the re-use of
common software elements and the extension of
existing elements for specialized applications.
Simulation frameworks such as NASA’s LasRs’' and
CAE’s STRIVE? were among industry’s first to apply
object-oriented principles to large scale vehicle
simulation. These frameworks provide base classes
and services in support of modelling, simulation and

interfacing in multi-vehicle simulations. The flight
mechanics group at CAE developed an object
oriented framework in C++, known as the Object-
Oriented Blade Element Rotor Model (OO-BERM),
for aerodynamic modelling and blade element
simulation.

The object-oriented framework differs from
procedural and object-based simulation tools by the
use of abstract interfaces (APIs) to encapsulate
individual library components, rather than enforcing
data exchange through hard-coded static structures.
This approach improves interoperability with other
simulation frameworks and eliminates intrusion from
other systems by ensuring that each object’s internal
data and behaviour are decoupled from other parts
of the system. Legacy procedural software can be
encapsulated behind object-oriented interfaces to
leverage existing mature libraries.  Polymorphic
methods are implemented in base classes to provide
a foundation of behaviour that derived classes inherit
or override to provide specialized behaviour. When
a specialized class inherits from one or more

abstract interfaces the interface delineates its
responsibilities  within  the larger integrated
simulation.

The object-oriented paradigm lends itself naturally to
physics-based modelling methods®* through the use
of component objects representing individual
physical models. The component-based modelling
approach adds clarity to the program structure by
having software objects simulate the behaviour of
real-world components or physical phenomena. The
composition of these objects constitutes the
complete simulation model. Components are
extensible without copying or modifying base source
code. This enables new features to be added by
extending base classes to address new operating
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environments and requirements while maintaining
backward compatibility. The result is simplified
software management and deployment.

The abstraction of low-level programming through
the use of pre-defined library components facilitates
the rapid-prototyping of aircraft models of scalable
fidelity. The user can create simulation models of
varying complexity by swapping components in and
out using configuration files without the need to write
software to integrate them. In contrast to closed
comprehensive codes requiring extensive option
selection, deselection and configuration, component-
based modelling through load-time composition
results in more efficient design since only
instantiated components need to be configured.

In rotary-wing flight mechanics, the burden of
implementing equations of motion for articulated
bodies with multiple linkages is removed from the
user by providing pre-defined objects encapsulating
equations for the solution of each part’s motion.

By assembling and deploying aircraft models using
pre-compiled components, the user is distanced
from the problems associated with automatic code-
generation such as the debugging of human un-
readable machine-generated code. Software
configuration management is simplified since the
source code evolution is visible and traceable. Long-
term software maintenance is promoted since library
models can be extended or specialized without
copying, regenerating or recompiling the framework
or user-extended classes.

2. SIMULATION FRAMEWORK

CAE’s OO-BERM framework is based on Foundation
Layers2 providing base classes, services and pre-

[ F]lght Mechanics Simulation } <::”:|[| { files

defined re-usable objects as shown in Figure 1. The
OO-BERM consists of two main packages:
structural component modelling to resolve the
dynamics of multibody systems without the need to
program equations of motion; and aircraft system
modelling permitting the wuser to develop
aerodynamic models or reuse pre-developed
components supplied as base classes in libraries.

The helicopter dynamics are computed by
assembling components available in the Helicopter
Component Library (HCL), which is based on the
dynamics solution of articulated tree structures. The
helicopter rotor model is configured at simulation
load time by instantiating the aircraft dynamic
objects, such as the helicopter body, rotor hinges
and blade structural segments from the library.
Aerodynamic models such as rotor inflow,
interference models, blade and aircraft body air
loads, ground reactions and other external forces
and moments, as well as atomic components that
evaluate single coefficients or simple functions, are
developed with a user-extensible Aerodynamic
Component Library (ACL).

The second layer consists of pre-developed, re-
usable models, components, adapters, data types
and 10 services that are packaged in libraries.
Models and components have configurable attributes
that can be modified for a specific application.
Adapters provide services to access CAE’s shared
memory structures and perform data type validation.
The adapters are extensible to interact with other
data structures or protocols. Mathematical data
types such as Matrix and Vector have been
developed to easily perform mathematical operations
and have overloaded operators to simplify the 10
these types from XML configuration files. The third

Configuration
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~ Project
User-extensible Spegl?c
models
— Aero models
—
\
4 Pre-developed
Math 1/0 reusable Aero reusable model “core” models
Lib Lib models adapters and libraries
\
e
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&
L services

Figure 1 - Framework Foundation Layers
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layer represents specialized models to address
specific requirements of a given project that may not
necessarily be re-usable on other projects.
Configuration files in XML format are used to define
which parts of the libraries constitute the complete
flight mechanics simulation. All layers are packaged
as dynamic-link libraries (DLL), which eliminates the
need for source-code deployment and compilation
on simulator host computers.

2.1. Helicopter Component Library (HCL)

The generic equations of motion solver for n-DOF
dynamics of an articulated tree automatically
computes the solution based on the tree structure of
the connected parts. The dynamic solution of
flexible, articulated tree is a global recursive code
based on Katz et al’. Figure 2 demonstrates the
modular approach to modelling with the analogy of a
helicopter modelled as an inverted articulated tree.
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* ..-l-
- & — —
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Elade 1 Blade 2 Blade 3 Biade 4
Segment 2 Segment 2 Segment 2 Segment 2

Figure 2 - Modular Dynamic structure of a Rotorcraft

The structural parts are pre-defined dynamic
elements available in the HCL that can be
automatically assembled into a complete aircraft
dynamics model. The solver recursively iterates
through the composition of the rotor tree and solves
the dynamics of each part. It accumulates the forces
and moments of all the branch elements and applies
it to the entire branch of the tree, treating it as a rigid
body with the instantaneous configuration of the
branch. It then recursively applies the correction due
to motion within the branch. This recursive solver
integrates for the velocity and position of each part
below the root. The 6-DOF root integration is the
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final step of the solution. The advantage of the
global recursive solution is that small-mass and
zero-mass parts such as pure hinges do not
introduce singularities as the model becomes more
detailed. Aero-elastic blade bending can be
simulated by dividing each rotor blade into a series
of rigid segments inter-connected by spring-damper
hinges representing blade elastic properties.
Therefore, through simple composition of the parts
and the hinge orientation of each part, it is just as
easy for the user to simulate the dynamics of
teetering rotors, fully articulated rotors, rigid rotors,
including or excluding aero-elastic blade bending.

All parts inherit from a parent called Part, as shown
in Figure 3, which provides the basic services
common to all parts of the rotor tree dynamics. The
HCL also provides four specialized classes that
derive from Part: HeloBody, RotorHub,
FeatheringHinge and BladeSegment.

The base class Part contains the routines for
computing the global moment of a branch that is
used to compute the angular acceleration. Any Part
or child of Part is permitted to rotate about an
arbitrary axis with respect to its parent in the tree.
For example, if one wanted to model a “Teetering
Hinge”, one way to do it would be to introduce a new
class representing a massless hinge deriving from
Part . The HeloBody class derives from base Part
and is usually the root part of the Tree. A helicopter
body part includes external forces acting on the
fuselage (e.g. undercarriage, tail rotor, slung loads,
weapons). The FeatheringHinge part is capable of
handling additional rotations due to feathering after
the basic part rotation, and automatically feathers all
structural segments outboard along its branch. This
automatic feature can be de-activated resulting in a
simple hinge rotation only. The BladeSegment class
derives from base Part and manages the dynamics
of a blade segment hinge that is also capable of
carrying external forces. Its key role is to

Part

getDeflection() : double
getAbsPosition() : Vector
getAbsVelocity() : Vector
getAbsAcceleration() : Vector
getAbsAngVelocity() : Vector
getAbsAngAccel() : Vector
getHingeSpringCongant() : double
getHingeDampingCoefficient() : double

i T

BladeSegment

+ o+t + o+ o+ o+

RotorHub

+ getNumAero Elements() : int

+ getRotorAzimuth() : double
+ getLength() : double

+ getNominalRotorRate() : double

HeloBody FeatheringHinge

+ getAircraftCGHeightAboveTerrain() : double
+ «tCG(Vector) : void

+ getCycdicPhaseAngle() : double
+ setCyclicPhassAngle(double) : void

Figure 3 - Helicopter Component Library classes
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accumulate the forces and moments for each
aerodynamic blade element on the blade segment.
The RotorHub part represents the hub of the rotor
and has additional interfaces to allow the application
of engine torque, and also provides specialized rotor
hub-related services such as azimuth and revolution
counter.

Each derived part can be hinged to its parent or
rigidly attached. Each hinge can accept nonlinear
spring and damping models. Each part is
represented as a dynamic object containing local
and global quantities. The local quantities are
associated with the part by itself as a free body, such
as the mass, moment of inertia, angular momentum,
or the external force applied directly to the part. The
global quantities are the corresponding values for the
entire branch including that part and all its
descendants.

While the HCL supports coupled rotor-body models,
an aircraft model is not required to contain a rotor.
The user is free to define an aircraft model
consisting of only an isolated helicopter body as the
root part. The first example in Section 3.1 illustrates
the value of this feature for scalable fidelity.

2.2. Aerodynamic Component Library (ACL)

The Aerodynamic Component Library (ACL) is
composed of reconfigurable and extensible classes
that are used to create forces and moments and
their constituent models, called Components. The
ACL base classes are shown in Figure 4.

The aerodynamic model build-up is done in a similar
modular approach as the structural composition
described above. A PartForce is used to create any
physical model whose output results in a Force and

«interface»
IForce

«interface»
IPart

getForce() : Vector
getMoment() : Vector

Moment that will contribute as a forcing function of
the HCL part's dynamics. Classes such as Blade
Aerodynamic Element, Tail Rotor or Undercarriage
derive from PartForce to define the external forces
and moments that can be applied to each dynamic
Part. A PartForce is created in a users library
extension by writing a C++ class that derives from
PartForce, as in the C++ code:

class ABC public PartForce

A PartForce is attached to or “owned by’ an HCL
part when it is declared in the XML configuration files
in the hierarchy under the HCL node (i.e. between
<part> and </part>) as illustrated in the following
example:

<part name = "helo body"
type = "HELO BODY"
parent= "NONE">
<class>
Attributes section ..
</class>

<partforce name="ABC">

<class method = "entryPointABC"
dll = "MyUserLib.dll">
. Data ..
</class>
</partforce>

<partforce name="XYZ">
<class method = "entryPointXYZzZ"
dll = "MyUserLib.dll">
. Data ..
</class>
</partforce>
</part>

The number of PartForce objects that can be
attached to a Part is unlimited. The accumulation of
all the forces is done automatically by the Force

getNumPartForce() : int
getPartForceByName() : IPartForce *

+ o+ 4+

«interface»
IPartForce

«enumeratio...
Dispatch

mDispatchRate: int
mDispatchShift: int

onEntry
onExit

Part

+ o+ o+ o+

Force

getForce() : Vector

getLocalMoment() : Vector

getMoment() : Vector
getComponentsByName() : IComponent *

IComponent

+ getBias(): double

f

sumPartForces() : void

+

getGain() : double
+ getDispatch(): double

i

Component

PartForce 0

+ initialize() : void mDispatch: enum Dispatch

+ update(): void

+ initialize() : void
+ update(): void

Figure 4 — Aerodynamic Component Library classes
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class. This object maintains a list (collection) of all
the PartForce instances and iterates through the
collection at each time step to get the individual
forces. These forces are accumulated and applied
to the (HCL) part’'s dynamics automatically, without
the need to recode force summation equations or
reserve spare “hooks” or entry points as procedural
programming requires. Each HCL part contains a
pointer to /Force and is used to get the sum of all
external forces and moments acting on that Part at
their respective local points of application and at the
Part’s centre of gravity.

Classes deriving from Component, such as CL, CD,
CM, Rotor Downwash, Blade Stall, define models
that compute equations and/or use data lookup
tables. A Component class is used to implement any
model or computation that does not return a force.
In abstract terms, a Component represents the
smallest possible re-usable, re-configurable or
extensible physical model or computation. The user
can then choose which components to include or
exclude from the simulation depending on which
features are required.

For example, referring to Figure 5, a basic or generic
blade aerodynamic model would only include the first
component BasicBladeAerodynamics in the XML
input files, while a more sophisticated model could
include all three. Typically, a force generator will
contain references to many components in order to
create models with a useful level of complexity for

flight mechanics simulation while retaining a
desirable level of abstraction, modularity and
extensibility. = The above example illustrates in

particular how implementing individual rotor blade
aerodynamic coefficients in separate components
decouples the blade model from each coefficient’s
implementation details. This also permits load-time
swapping of equation-based components with ones
obtaining outputs from data lookup tables. In CAE’s
deployment of the OO-BERM framework on a
Handling Qualities Simulator (HQS), Components
fulfiled a variety of responsibilities, including
aerodynamic coefficients, finite state machines (e.g.
vortex ring state simulation), malfunction processors

component to produce lift

L L Blade Icing
spoiling in icing

component to produce

T Blade Stall
dynamic lift

Basic Blade
Aero-
dynamics

component to produce
basic lift coefficient

Figure 5 - Component abstraction
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(e.g. tail rotor failure), inflow model constituents and
interactional aerodynamic models.

The helicopter articulated tree topology, all
aerodynamic components, as well as objects fulfilling
abstract interfaces for the flight control system,
engine/power ftrain and atmospheric models are
specified in XML configuration files and resolved
dynamically at simulation load time. Furthermore,
when deriving a Part, PartForce or Component in the
user’s library extension, the user is free to define its
attributes settable at load time and those attributes’
corresponding XML name tags. Thus, without the
need for code generation or recompilation, the OO-
BERM can simulate arbitrary rotor and hinge
arrangements, rigid or elastic bending blades and
interchangeable aerodynamic models, as well as
integrate with simulator of varying sophistication.

3. EXAMPLE APPLICATIONS

3.1. Reduced Order Aircraft Model for Handling
Qualities Study

This example demonstrates how simple reduced-
order vehicle models, valuable for handling qualities
studies, can be created using the OO-BERM. The
simulator motion study of Schroeder and Chung7
investigated the effects of roll and lateral motion
cues on pilot workload during a 2-DOF sidestep task.
In this study the vehicle equations of motion were
represented by the following state-space model:

p = Lpp+L§]w 5/0[

(1) $=p
v=gsing

No other degrees of freedom were modelled.
Implementing this vehicle model in the HCL is simple
since it does not require the user to instantiate a
rotor. The design and implementation of this
example are illustrated in Figure 6. The specialized
PartForce, class TwoDofRollLat, implements a
simple first-order transfer function for the lumped
aircraft roll rate response. It uses the lateral cyclic
input and body roll rate to compute the rigid-body
roling moment.  This is equivalent to the roll
acceleration since the inertia tensor is set to identity
in the XML configuration file. The HCL and ACL
provide interfaces for real-time data exchange that
are required by a client, including aircraft states and
control angles (roll rate and lateral cyclic,
respectively in this case). The stability and control
derivatives’ values are set at load-time from the XML
configuration file.

An alternative design illustrated in Figure 7 permits
run-time modification of the derivatives’ values
through the specialized class SettableComponent.
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HCL & ACL

- << interface >> <berm>
<< interface >> 1 IPartForce <part name="helo_body” type="HELO BODY"
= IHeloBody parent="NONE">

+ getForce(): Vector

+ getMoment(): Vector
+ update() <class>

<mass> 1.0 </mass>
<moment_of_inertia>

[1.0, 0.0, 0.0]
<< Iigterft.’:lcle >> ! PartForce [0.0, 1.0, 0.0]
ontrols HeloBody [0.0, 0.0, 1.0]
* getForce(): Vector </moment_of_inertia>
tM t(): Vect — =
: update() | 0:ecter <in[g,ocgagogit(i§nfstn>
A </init_cg_position_stn>
<alt> 10.0 </alt>

getP0 CUsorexenson | | oS> 150 <psi>

TwoDofRollLat <partforce name="OnlyBodyMoment">
<class method="createTwoDofRollLat"
+ getForce(): Vector dll="UserLib.dII">

+ getMoment(): Vector

etLateralCyclic()
g yelic() + update()

<L_p> -4.5 </L_p>
<L_dlat> 0.25 </L_dlat>

®-1_p : double </partforce>
-1_dlat : double

update()

p = IHeloBody->getP(); </part>
dlat = IControls->getLateralCyclic();

<fcs method="createMyFlightControls"

pdot =1_p*p + |_dlat*dlat; dll="GenericModels.dII" />
moment = Vector(pdot, 0, 0);
. </berm>

}..

Figure 6. One possible implementation of 2-DOF aircraft model to reproduce a roll-lateral handling qualities
study ’. Fixed values of L, and Lqiat are specified as XML configuration data.

HCL & ACL

<< interface >> << interface >> <partforce name="OnlyBodyMoment">
IPartForce — IComponent <class method="createFirstOrderRoll" dll="UserLib.dII">

+ getForce(): Vector

N .
+ getMoment(): Vector value(): double

+ update(): double <component name="L_p">

+ update() <class method="createSettableComponent" dll="UserLib.dI">
<value> -4.5 </value>
A A </class>
: </component>
PartForce Component
+ getForce(): Vector <component name="L_dlat">
+ getMoment(): Vector + value(): double <class method=" createSettableComponent" dli="UserLib.dII">
+ update() * update(): double ﬂalue> 0.25 </value>
</class>
Z \ Q </component>
</partforce>
User Extension ‘
: I
TwoDofRollLat SettableComponent
P Specizliaed Component allows an
+ getForce(): Vector + update(double): double extelfnal client to set its yalue for
+ getMomenty(): Vector N run-time data manipulation .
+ update() update()

p = IHeloBody->getP();
dlat = IControls->getLateralCyclic();

-1_p : IComponent*
- 1_dlat : IComponent*

damping = |_p->value();
control = |_dlat->value();

pdot = damping*p + control*dlat;
moment = Vector(pdot, 0, 0);

Figure 7 - Second possible implementation of 2-DOF aircraft model to reproduce a roll-lateral handling qualities
study7. Lp and Ldlat are implemented as components to allow run-time modification.
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Instead of owning static values of L, and L; ,

TwoDofRollLat refers to the abstract interface
IComponent to obtain those values during run time
from any class fulfilling that interface. Here, this is
fulfilled by the specialized class SettableComponent,
which extends the base Component to allow an
external client, such as a simulator operator’s
console, to override its value while the simulation is
running. This capability is invaluable for handling
qualities parametric studies such as the one
performed by Mitchell et al’. It should be noted that
SettableComponent is completely independent of the
mechanism or console that would need to assign it a
new value. It is reusable in the compiled library
across a range of applications in any simulation
environment.

The two designs presented for this application
demonstrate scalable fidelity. A traditional blade-
element code could either not support the simple 2-
DOF simulation or would require significant effort to
null the rotor dynamics and aerodynamics as
required for this case. Similarly, object-based
systems reliant on code generation would need to
generate two separate executables for the blade-
element and 2-DOF applications. In contrast, the
OO-BERM permits the same compiled library to be
used for a complete nonlinear blade element
simulation as for a rudimentary 2-DOF rigid-body
state-space model. Only load-time configuration

specified in XML files differentiates the two
applications.
3.2. Modeling Abnormal Conditions for Level-D

Simulation

The HCL treats each main rotor blade as a separate
body with independent properties. As structural
elements, each blade segment must fulfil the same
abstract interface as all other structural parts. One
service in this interface (Ipart->setMass ()), allows
a client to modify the part's mass during run time.
This service allows an atmospheric simulation
module to accrete and shed of ice mass on the
fuselage, rotor hub and rotor blades using the same
interface. This also permits the implementation of
blade damage effects by extending base classes
with only a few lines of code.

In the simplest case, blade damage may be
simulated as the loss of one blade’s tip cap, causing

©DGLR 2009

in a reduction in mass and inboard CG shift on the
affected blade and resulting 1/rev vibration. This
physical model would have been implemented in
traditional procedural code with a conditional
statement built into the core blade dynamics routine,
such as in the following pseudo-code:

blade cg data

blade length data
blade mass data

tip = blade tip mass_data

(]
L
M
M

for (i_blade = 1 to NumBlades)
if (tip_loss_active AND i blade=1)
local mass = M - Mtip
local cg = (M*c - Mtip*L)/local mass
else
local mass = M
local cg = c
endif

{compute blade ‘i’ dynamics using
local mass and local blade cg}
end

The disadvantage of this implementation is that it
binds the core dynamics module to a simulator
feature whose requirements change between
projects. This results in non-portable software. An
equally unpalatable alternative would have one blade
use a specific dynamics routine dependent on the
malfunction flag while the others use a pure
dynamics routine, which would complicate
configuration management significantly.

In contrast, in an object-oriented implementation
illustrated in Figure 8, the core blade dynamics are
not polluted with a project-specific malfunction
implementation. Instead, the fundamental
malfunction feature is implemented by the
TipLossEffect class as a User Extension, but
remains independent of specific clients; this makes
the class reusable in any simulation environment as
well as being extensible (such as to allow variable
malfunction severity).  Only the user-enhanced
adapter layer is associated with a specific instructor
interface, thereby shielding the malfunction policy
and blade dynamics from any specific simulator
architecture.
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HCL User Extension

<<interface>>

ITreeQuery R

+getNumBlades()
+getNumSegmentsPerBlade()

TipLossEffect

,,,,,,,,,,,,, Client

+activateTipLossMalf()
~| +deactivateTipLossMalf()

<<interface>>
IPart 24

-tipMassFactor: double

+getlnitialMass: double
+getlnitialCG: Vector
+setMass(double)

+setCG(Vector)
{

)

TipLossEffect::activateTipLossMalf()

;jé%aultMass = bladeSeg[0,n]->getlInitialMass();
newMass = defaultMass * (1.0 - tipMassFactor);
bladeSeg[0,n]->setMass(newMass);

Figure 8.

framework.
A typical full-flight simulator implementation is
illustrated in Figure 9. The  class
SharedMemConnector provides a method for

connecting to a specific address in shared memory
by global variable name, for reading and writing to
that address. SharedMemConnector could also
enforce data type verification and provide other low-
level services. MalfSharedMemAdpater is a
specialized class that uses SharedMemConnector to
read the global variable MALF_TIPLOSS, which
could be set from a simulator instructor console.
The class MalfSharedMemAdpater is solely
responsible for activating and deactivating the
malfunction at the correct instant, while the
responsibility for actually executing the malfunction’s
effect remains with TipLossEffect.

An alternate implementation for a desktop simulation
environment is illustrated in Figure 10. In this case,
the simulator has a user-customizable console

©DGLR 2009

Object-oriented implementation of main rotor blade tip loss malfunction using HCL

driven by keyboard input, which could be useful for
software qualification. A specialized ConsoleReader
interprets keyboard events as requests to activate
simulator functions, such as toggling the blade
damage malfunction state by pressing the “M” key.

In these examples, the TipLossEffect class remains
independent of the mechanism used to activate the
rotor blade malfunction, and the core dynamics
classes are not bound to the malfunction. This
demonstrates how the framework supports scalable
fidelity and arbitrary simulator architectures. Once
the user's extension DLLs contain the classes
required to support both methods, they can be
reused without recompilation on either simulation
platform; only the XML configuration files would differ
in order to instantiate either adapter dynamically at
load time.



35th European Rotorcraft Forum 2009

~N
User Adapters

SharedMemConnector
+findAddrByName(string) Shared Memory
§ +readFromSharedMem()
User Extension :
+writeToSharedMem() Variable Name | Address
A
i MALF_TIPLOSS | 0x0000B010
TipLossEffect
MalfSharedMemAdapter

+activateTipLossMalf()
+deactivateTipLossMalf()

-malfTipLoss: boolean

-tipMassFactor: double

calls TipLossEffect->activateTripLossMalf()
when shared memory variable
MALF_TIPLOSS = TRUE

calls TipLossEffect->deactivateTripLossMalf()
when shared memory variable
MALF_TIPLOSS = FALSE

\ ‘ J

Figure 9. lllustration of malfunction adapter for shared memory data exchange, such as on a full motion
simulator.

~
User Extension User Adapters
TipLossEffect ConsoleReader o Keyboard Input
+activateTipLossMalf()
+deactivateTipLossMalf() +readConsoleEvent() Key Bound Event
MassF doubl -malfTipLoss: boolean
-tipMassFactor: double
P / “F” Toggle Simulation Freeze
‘M7 Toggle Tip Loss Malfunction
calls wgr - ;
TipLossEffect->activate TripLossMalf() S Quick Start Engines
or
TipLossEffect->deactivate TripLossMalf()
when ConsoleReader requests to toggle the
malfunction state.
. J

Figure 10. lllustration of malfunction adapter for simple desktop console application.
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3.3. Handling Qualities Simulator (HQS)

The OO-BERM was integrated on a reconfigurable
rotary wing Handling Qualities Simulator (HQS) as a
design and development tool. The open framework

and component approach to model building
maximizes extensibility and re-usability across
different platforms and aircraft types. The

reconfigurable models provide the functionality
required to attain Level D fidelity as aircraft data
becomes available. The HQS is also equipped with
a suite of CAE analysis tools for automated test
driving, data analysis & visualization, online re-
configurability and debugging. Figure 11 is a
photograph of the HQS in a generic configuration.

3.3.1. Integration With Mature Legacy Software

Libraries

The Handling Qualities Simulator employed a
complex integration of dynamic models and
simulator functions, as illustrated in Figure 12.
Compiled user-extended libraries using the ACL and
HCL included clean airframe and empennage
aerodynamic models, interactional aerodynamic
models, main rotor blade element, and tail rotor
aerodynamics, and main rotor inflow including vortex
ring state models. These were integrated with
mature procedural software libraries for tightly
coupled components, including CAE proprietary
reconfigurable engine and fuel controller models,
AFCS and flight controls models, the CAE Advanced
Ground Handling Model®, under slung / hoist load
dynamics, mass properties and aerodynamic models
for external stores and role equipment. The
interfaces provided by the ACL and HCL and use of
specialized adapters resulted in straightforward
implementation of the HQS architecture with little or
no modification to legacy libraries. The HQS was
configured with generic data representative of a
notional 8-tonne helicopter. The object-oriented

Figure 11 — Reconfigurable Rotary Wing
Handling Qualities Simulator.
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modules and ground reactions updated at 420 Hz.
The remaining modules were updated at the
simulator base execution rate of 60 Hz or slower.
Synchronization of data exchange via the shared
memory adapter layer was performed by a flight loop
coordinator.

Figure 13 demonstrates the synchronization of the
object-oriented model and the legacy engine, fuel
controller and transmission models during a dual-
engine start and rotor run-up to operating conditions
on ground. Torque is provided from the
transmission to the rotor through the engines’
interface IEngines->getTorque().  The RotorHub
requires this interface to obtain the propulsion
system torque output. An adapter fulfils the /Engines
interface by obtaining the propulsion system’s torque
output from CAE shared memory. After the
dynamics updates all forces and moments,
computes rotor acceleration and integrates for
angular rate and position, another adapter uses the
IPart provided interface to publish the resulting rotor
speed to shared memory for use by the propulsion
system and other procedural libraries. Figure 13
shows how the engines and rotor run up during the
start sequence and the fuel controller is able to
govern rotor speed at operating conditions with the
expected stability.

Figure 14 shows how a shared memory adapter was
used to provide external force and moments from an
under slung load model running in a legacy software
library. As described in Section 2.1, the HeloBody
class, which represents the helicopter body in the
dynamics tree, automatically accumulates external
forces and moments from any class fulfilling the
IPartForce interface that was declared under the
HeloBody XML hierarchy. On the HQS, this was
fulfiled by an adapter reading those forces and
moments from shared memory. As with the engine
simulation, the underslung load model requires
helicopter body states such as acceleration and
velocity in order to compute the load dynamics.
These states are published from the OO-BERM
through a shared memory adapter, which was
excluded from the figure for brevity. It should be
noted that these adapters are bound to names of
variables in shared memory, not addresses. This
soft binding is performed at load time. Therefore,
the adapter does not to be recompiled if the
sequence of shared memory variable declarations
changes. This results in a portable compiled adapter
library.
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Aerodynamics
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Adapter Layer

Shared Memory Adapters

Flight Loop

Underslung / Hoist
Load Dynamics
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Flight Controls

AFCS |
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| Transmission |

Environment Sim. Functions
Trim Loop
Atmosphere
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& icing)
| Freeze / Reset |
Terrai
el | | Crash Detection |
Operator Station
Validation Test
Driver
/
Legacy software:
- FORTRAN and C

- Shared memory data exchange

Mass Properties

Role Equipment

Figure 12. Handling Qualities Simulator software domains.

Figure 15 shows the result of a computer-generated
longitudinal cyclic frequency sweep run on the fully
integrated HQS. Like the preceding examples, this
frequency sweep illustrates the synchronization of
tightly interdependent flight loop components across
the object-oriented and procedural domains. The
validation test driver includes a math pilot that
performs closed-loop flight path regulation. One
criterion for control frequency sweeps is that the
excitation produces responses within a linear region
about the trim condition®. On HQS, the FORTRAN
math pilot modified the raw commanded longitudinal
cyclic on-axis inputs to maintain pitch attitude
response within 5 degrees of trim, as can be seen by
the increased input amplitude near the short period
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mode around t = 50s. The original commanded
lateral cyclic input was zero change from trim. The
notional helicopter model exhibited a high degree of
pitch to roll inter-axis coupling, which the math pilot
correctly suppressed by introducing lateral cyclic
inputs to maintain the roll attitude response within 10
degrees of trim at the lowest frequency range before
backing out of the loop correctly as the roll response
attenuates at higher frequencies. This feedback
loop closure between math pilot control inputs
generated by a FORTAN module and aircraft
response computed by models in the object-oriented
framework demonstrates good synchronization
between the two domains.
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Figure 13. Result of dual-engine start run end-to-end on Handling Qualities Simulator.

HCL

<<interface >>

HeloBody IPartForce

+ getForce(): Vector
+ getMoment(): Vector

D

PartForce

Loops over container of
specialized IPartForce
classes to sum external
forces and moments
acting on the helicopter
body.

+ getForce(): Vector

+ getMoment(): Vector User Adapters

User Extension r

USLFromSharedMem

SharedMemConnector

+findAddrByName(string)
+readFromSharedMem()

+ getForce(): Vector
+ getMoment(): Vector

Shared Memory

Variable Name Address

USL_FORCE_X 0x0000A000

USL_FORCE_Y 0x0000A008

USL_FORCE_Z 0x0000A010

USL_MOMENT_X 0x0000A018
USL_MOMENT_Y 0x0000A020

USL_MOMENT_Z 0x0000A028

Figure 14. Underslung Loads shared memory adapter provides forces and moments computed by an
external underslung / hoist loads model.
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Figure 15. Result of longitudinal cyclic frequency sweep run end-to-end on Handling Qualities Simulator

including on- and off-axis closed-loop stabilization.

4. CONCLUSIONS

An object-oriented blade-element and aerodynamic
modelling framework, OO-BERM, was developed
and deployed on a Handling Qualities Simulator.
This framework provides an environment for the
development of configurable flight mechanics
simulations for research, development and aircrew
training. OO-BERM provides the capability to
develop and deploy vehicle simulation models of
scalable fidelity on a range of simulator platforms
without reliance on recompilation.

The wuser assembles components to create
simulation models of varying complexity by swapping
components in and out using configuration files at
simulation load-time. Component-based modelling
adds clarity and results in more efficient design than
traditional comprehensive and object-based codes,
which require intermediate code generation and/or
extensive option selection and configuration.

OO-BERM models are extensible such that new

features can be added by extending base classes to
address new operating environments or additional
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requirements  while maintaining backwards
compatibility. This is accomplished without copying,
regenerating or recompiling source code, resulting in
simplified software management, deployment and
maintenance.

Abstract interfaces decouple core models from
specific clients and simulator environments. This
facilitates interoperability with third-party frameworks
and leveraging of mature procedural software
libraries.

Examples were provided illustrating these features
for handling qualities studies, Level-D simulation and
mission rehearsal. Future work includes aeroelastic
model research and handling qualities studies, and
further expansion of core libraries.
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