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principle applied to strain and kinetics energiaplieitly
ABSTRACT derived from beam fibers axial elongation. Hodgesrne of
the first to use a so-called “exact” method foriduwdter
blade modeling [4]. His work is widely used sinben for
composite blade modeling [11], [13], cross-sectiona
characteristics calculation [12], and comprehensivalysis
codes assessment [6]. In those studies, both shedr
warping effects are taken into account for equation
development. Some other authors are particulatbrésted
in initially curved beam, among them Borri and[&4] and
Geradin and al. [15]. Since helicopter blades can b
considered as thin walled composite beams, Librasdual.
[16] give some elements in this way.

Numerical implementation of calculated equations
is mainly achieved using Finite Element Method (FERbr
classical dynamic purpose, FEM is convenient aniequ
accurate if one pays attention to finite elememtatdities.
Another current method relies on dynamic stiffnesstrix
derived from frequency-dependant shape functiorisngu
down the number of elements needed. This methoftés
called Spectral Finite Element Method (SFEM) iertiture.
Chandrashekhara and al. [17] Banerjee and al. fi9]
Mahapatra and al. [18] developed more and more tmp
models, all based on Wittrick and Williams algomittj20]
for natural frequency calculation.

As the beam elastic model developed in this paper
is to be implemented in a comprehensive analysie,co
FEM is retained, blades being meshed anyway for
aerodynamic purpose. Regarding for full rotatiocegbable
elements, one can refer to Lalanne and Ferrariek 5]

Bladg elagtic behavior modeling is an important both for rotating and fixed frame. Early work of
research topic for improvement of comprehensiverooaft Przemieniecki [7] introduced Timoshenko's shear

a_nalysis codes especially for dynamic and_statn'iitylysis, coefficient [21] [22] in both stiffness and massrmaéntary
vibratory loads and performance calculations. Tke of matrix. Batoz and Dhatt [9] give a global view ogam
composite materllal_s and new Ish?jpes ford blag:;daﬂ‘:h finite element modeling undergoing many effectse Timain
Zwept t;]p or evo unoglary twist eal to sdtul )l;ah op contribution of our work is the introduction of shieeffect

eam theories in order to properly model both stmat in all matrices, including geometrical stiffnesstrmaand

coupllnglvgthenomeﬁnaandr:otatlonsl effectj. limi centrifugal force work. Moreover, an eight-degrdée-o
any efforts have Dbeen done to Mt goeqom per node finite element based on cubicapsh

apprQX|mbat|ons wh(:]n V\g.'t'ng the equations OfEmOtfﬁ" functions is developed to increase convergencedsped
rotating beams with arbitrary cross-sections. Eantyrks avoiding shear locking effect [8]. Full multi-maitdrcross-

[21,[3] introduced twist effects and coupling betme section capability is also added to [1]. At lasarge

Eending and  torsion 'motioqs.' Fe;]rari?_’ ldstu?y bn displacement capability is provided to the finiteneent
omogeneous — cross-section [1] in the fie of turbo using co-rotational formulation from Criesfield wof10].
machinery blade modeling makes clearly appeamaipting This element should fit all requirements for comifeos

terms du_e to_gravity and shear center non coin_ckeiamd curved and twisted blade for articulated and riggdicopter
adds to it twist dependency, geometrical non-lilgaand hubs

rotational effects. Equations are obtained usingnittan

Structural, shape and performances optimization in
helicopter rotor leads to design composite bladésally
curved and twisted. This design yields a highly ped
behavior between torsion, longitudinal and bendi@ions
of blades. A non-linear Timoshenko-like straighatvefinite
element is proposed to predict the static deforwnatinder
aerodynamic and centrifugal loads and achieve dimand
stability analysis. This elastic model is to be lempented in
a comprehensive rotorcraft analysis code, which maea
accuracy, reliability and calculation time compremi
Model validation is based on analytical and nunaric
investigations. The developed model reveals to bey v
accurate for beams with extreme shapes comparbthde
design. It is now expected to improve predictiomaldgy for
full helicopter simulation tools and particularlprfrotor
dynamic analysis.

Keywords Timoshenko’s beam, finite element, nonlinear,
composite blade, shear locking free, rotationada.

1. INTRODUCTION



2. EQUATIONSOF MOTION Considering a poinM of the initial cross-section,
M' is its counterpart after torsion motion ard' its
Beam equations of motion are based on explicit counterpart after bending and axial motions.

writing of fibers axial elongation and velocity lfleas it is M and T are simply linked by their coordinate in
done in [1]. This method permits an exact developnod initial frame R:<N,>”<,$,/7>
strain and velocity fields, approximated by a seconder
scheme which leads to non-linear equations. Nefibat is 0
taken as the reference axis for beam deformatioplying ™ = E-¢; 2)
that without shear cross-sections initially perpeunldr to

this axis remain undeformed when small deformatiares 1= )
applied. Pure torsion motion is supposed to be wpled . _ )
from bending and longitudinal motions, with this By the same wayM' and Tare linked in the
assumption it can be applied separately to the beam twisted frame, which give irR frame
0
In beam theory, the effect of the strain field is (77 =n1r)cosp+ (¢ =& )sing)
limited to fibers axial elongation and torsion ang.g. to 1

One can deduce strain energy by knowing how bedrassf

are stretched. First step consists in calculdfilreys length ~ @rounds7, one can retrieve the link betwedf” and M ™

before strain field is applied. U+nye —&ug
i MM = v @)
w

R
with 7,,. and§,,. the coordinates oM' in R frame.

The length of the fiberM,M, after all motions
being applied to cross-sections can be deduced from

equations (1) to (4) by decomposing the vechdt"M," .
MluMZ“ = Mlanl+ Ml'Tl +T1M1

Figurel: Length of an undeformed fiber of the beam +MM, ®)
+M2T2 +T2M2‘+M2IM2“

For a short piece of beam, considered straighty wit
a length dx between the elastic centeds, and N, of its Finally axial elongation of beam fibers can be
two extreme sections, the length of an unspecifibdr simply expressed as :
MM, is related to the initial twist angle per lengthitug’ MM = MM
1 2 12
by : £= (6)
"\/|1|\/|2 :(14.%(,72 +52)012jdx (1) MJ_MZ

) ) ) Keeping in second order terms, the strain field
Let us now consider the displacement field for one yithin cross-section contains non-linear terms tiogpeach

of the beam cross-section. motion with all other.
E=&+E, )
£ =U =g +ng +koy ®
u'2 Vlz Wz @72 22 %2 202 2
> g =—+—+—+—"L @ +=-¢°F'° +h
ke nl 2 2 2 2 I7 2 E ¢
12 12
4 @
820 27
¢ 2 g 2
Figure 2 : Decomposition of beam defor mation H(E =&)X P+ (-7 )X, @ ©)
First all points in the cross-section undergo torsi +OU'g +nOU'g g, —dU'g,
motion turning py ? twist a'ngle around the shea.r center +é&nBo.p. - &by, +§rﬂgr2%¢{ -éng, o
T . Then longitudinal motioru and bending motiony oo oo
andw are applied. -$09 9+ 090
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with  kand h two constants depending on points

coordinates and using ) = di
X

In addition, Timoshenko’s beam theory is used to
link bending angles to lateral displacement:

@ =V +C; (10)

2.3 LAGRANGE'S EQUATIONS

Applying Lagrange’s equations to the strain and
kinetic energies is a very common way to determine
equations of motion using Hamilton’s principle. Watt
damping and external forces other than centrifdgates,
equations are:

¢ =-W+C, (11)

d(dT dT du
— | —-—+—=0
dt(dqij dg dq (47)

2.2 BEAM VELOCITY FIELD

To introduce rotational effects in the velocityldie
of the beam, consider the fixed franfe, :<O,X,\?,Z>.

Beam is rotating around at a speed of . Position of a
point M, after application of the displacement field is

decomposed as:

oM, =

12)

g : generalized coordinates,
T : kinetic energy,U : strain energy.

2.3.1 STRAIN ENERGY

Strain energy can be deduced from strain fielclalhg
the beam by adding to it the pure torsion straigrgy

U=U, +U, (18)
Torsion energy is classically:
U, =2 G1.¢f%dx (19)
T~ 2J.L T

Figure 3 : Cross-section displacement field

Beam is considered as straight between a first

cross-section of elastic centérand the current cross-
section. PointO coordinates inR frame is (X,,&./7,) -
Using expressions (3) and (4), one can find :

} 13)

R

Velocity of point M, in the rotating frameR is then:

Xa +X+U+(/7+(<(_€rt)¢)¢( _(f_(”_”t)@%
oM, " Satérv=--n)e
Natn+tw+(§-$)g

with J; the cross-section torsion constari,its shear
modulus andL the beam length.

Strain energy due to beam elongation is :

1
U, = ELEszdv (19)

with E the Young modulus of the cross-section.

Equation (19) is developed in details by the
introduction of the non-linearity of the elongatisinessed in
equation (7) and of the shear energy resulting fimram
deformation.

U =U +U U +U e (20)

—  O0OM," —— — One can retrieve classical linear strain energy:
Vi, = + Qg AOM, (14) ¥
oy U, =% L Es2dV (21)
Using ( ):a , we have :
. . - Shear energy results from introduction of
oM U+ng: =<4, Timoshenko’s theory in eq. (10) and (11) when fki
p L=iv=-n-n)e (15) bending angles to lateral displacements:
W+(S -6 .
and Ugpear = EL (20 €, +20,,¢,,)dV (22)
! with
Qriro =19, (16) 28, =@, +V (23)
Qs 26, =@ +W (24)

the rotational vector expressed iframe.



Introducing k, and k,, the Timoshenko’s shear 2.3.3 MATRIX FORM OF EQUATIONS

fficients fi h bendi is defined as: . .
coetneients for each bending axis defined as Introducing results from (21),(29),(30) and (32) in

equation (17) the final equations of motion govegnthe

2 2
L - J‘O_ ds | TL - J’a ds (25), (26) rotating beam movements can be formed.
kS 1% kS ¢
| | MG+C(Q)4+(K +Kq (0,) - K4 (Q%))a = Fe (Q2) + Fy
with T, and T, transverse forces applied to the cross- (34)
section andSits area. kSrepresents the sheared area also
often called “reduced section”. Conveniently the matrix form of the equations
makes appear classical mass and stiffness matrideslso
Transverse shear stresses are then: some other terms detailed here after.
O, = 26K &, (27) M : Mass matrix, including rotatory inertia
O =2Gke 28 C : Gyroscopic matrix (Coriolis effect)
w = 26K,Eq (28) K : Stiffness matrix, including shear stiffness arpglre
_ torsion stiffness
From which one can get: Ko : Stress stiffening matrix (making equations
1 nonlinear)
U ghear = ELA'G(kfgi’ +k,e2))dV (29) Kg : Spin softening matrix
F. : Centrifugal force
Non-linear terms give: F.,. : Other external forces
Uy :'[/Eglgnldv =L00£n|dV (30)
3.FINITE ELEMENT DEFINITION
with UO the |n|t|a| aXiaI stress within the beam. The f|n|te e|ement proposed in th|s paper iS an

advanced beam element, undergoing shear effeckouwtit
At last remaining terms can be neglected as crossshear locking, having non-classical degrees ofdfyee to
products between non-linear terms are high oraerde reduce the number of elements needed, and beinglieon

1 with multi-body numerical methods requirements.
Unw =3 [ Ecaav (31)
3.1 SHAPE FUNCTIONS
2.3.2 KINETIC ENERGY The choice of shape functions is one of the main

issues when formulating a finite element, conditign
Kinetic energy is directly calculated from the Degrees of Freedom (DoF) that will be included fre t

velocity field along the beam: model, and the accuracy of results.
1 5 Classical cubical shape functions are chosen for
T :—L,ovM dv (32) lateral displacements in order to link correspogdiending
2 angles (eq. 10 and 11).
— 2 3
with p the density of the cross-section. V(X) = 85 + 83X +a,X" + 85X (35)

W(X) = ag + X + a, x> +a,x° (36)
Kinetic energy terms can be gathered depending on
their order and their derivation with respect tmei 2° The innovation of our work is to choose again
order “velocity” terms lead to define a mass matix cubical shape functions for longitudinal displacemand
stiffness matrix can be built with™2order “displacement”  torsion motion.

terms, while cross products between ve!ocity _and u(x) = a, + a,x+ax’ +a,x’ (37)
displacement terms make appear the gyroscopic xmati 5 .
last first order “displacement” terms correspond to PAX) = 8y + 8y, X+ 83X +ayX (38)
centrifugal force work. Other terms disappear when
Lagranges’ equations are applied. These shape functions involve the inclusion of
longitudinal and torsion motions derivatives in #lement
T =Toasst Taiir T gyrat Ter + Totmer (33) DoF. This permits not to assemble these derivatfesvo

successive elements, e.g. to let them free. Ddiigy bne
can ensure torque and longitudinal load transntissio
between two elements with different cross sectional
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characteristics, with no need for a mesh refinenagotind
the transition zone.

A simple example (fig. 4) can exhibit the interebt
such a choice. Torsion momentum is related to dhsidn
angle through the cross-sectional inertia and nater
properties:

0 0
M, = E1|16_i1 , M, = Ez'z% (39),(40)

Torque is to be transmitted from element 1 to

element 2. Elements have different cross-sectianheir
common node and are possibly made of different madde

M, =M, »  ElLZE, (41),(42)
%, , 00 @3
0X 0X

Eq. (39), (40) and (42) imply from (41) that tansi
angle derivatives for both element remain free civliannot
be ensured if these derivatives are not permitteB Bf the
finite element. Same demonstration can be perforfoed
longitudinal load transmission.

S; (B L)

Figure4 : Torquetransmission between two
different elements

3.2 DEGREES OF FREEDOM

Considering now a single node of one beam

element, the minimum number of independent DoFai$ h
the number of unknowns in shape functions (35):(2&)
for classical 3D beam finite elements, 6 DoF aresehn to
locate the node in space. Derivatives of longitatdin
displacement and torsion motion are added. In ondérto
assemble those 2 DoF between two elements, eaehhasd
to separate contributions coming from left-sidevaat and
right-side element (respandr subscripts).

\"’f ¢

n, 6, u
Py

w

Figure5: Beam element node degr ees of
freedom

Finally each node has 10 attached DoF, which

means 20 DoF for one beam element:

(Bu) = (U Vo, W @, B, G, Ui U g U Vo W, B, 0 B U U B )
(44)

Shape functions coefficients to a,are related to
DoF by matrix A :

&
 t=1afe) (45)
A

Coefficients of equations (37) and (38) are easily
found using element boundary conditions for londjital
and torsion motions.

u@=u, uL) =y, (46)
u(0) =uy, U (L) = Uy (47)
P0) =9, AL)=¢ (48)
g0 =dy, #(L) =4, (49)

with L the element length.

For bending motions, shear effects have to be
added in order to correctly derive shape functions
coefficients.

3.3 INTRODUCTION OF SHEAR

Transverse shear effects modify the beam behavior
in bending motions, adding cross-section rotatitm®nes
produced by lateral displacements. Those displaotnsnd
bending angles are cinematically linked togetheugh eq.
(10) and (11) with Timoshenko's theory. Developitiis
relation between DoF, one can build a finite eleirfexe
from shear locking as explained in [8].

v 4,

AN
M+ (“—U dx

5

Figure 6 : Beam equilibrium

Let's consider only one bending motion. Fig. 6
exhibits how forces and momentum are balanced mvighi
short part of the beam. Eq. (23), (25) and (27) ban
combined to retrieve classical relation betweenashe
transverse force and Timoshenko’'s supplementanarshe
rotation of cross-section (Eq. 10).

T=CkSG (50)
From static equilibrium we have:
T _, M (51), (52)
0x 0X

From theory of strength of materials we have:
% _M (53)
ox El



Deriving eq. (10) gives: 1 =& - k&

& oné -&ke
02% v (54) [ch]= El sym n’ -nké' (61)
o oc e+ S5
Eventually eg. (50) to (54) lead to 3.4.2 SHEAR STIFFNESS MATRIX
C. = El 6_3\/ Shear effects result in an additional stiffnessrixat
¢ kG a3 (59) coming from eq. (29) considering relation (55).
. 1
As for longitudinal displacement and torsion angle, Ushear = L(5shear>[Kshmrg](5shear}dV (62)
shape function coefficients are deduced from bonda 5 — W
conditions at element ends applied to eq. (35) vathtions < Shear) _< ' > (63)
(10) and (55) between DoF. &%, 0
K =g 12
VO =vi, V)=V, g O =g etg()=g,  (56) (Koo o Tt (64)
12
@:ae+2ax+3a8x2:(p—c (57)
Pe 7 h ~ Ce 3.4.3 STRESS STIFFNESS MATRIX
3 L2
M:6 =C,=—=% (58) Stress stiffness matrix can be calculated once the
e % ¢ 2 8 : ;
X mean axial stress is computed:
with a, = 12E1 the shear coefficient introduced by [7] _1 J [ ]{5 }d
¢~ Gk SI? ! Uron =500, (8K oo 13, JAV (65)
conveniently being almost null for long slender roeafor <59> =(UV, WV, WV WL ) (66)
which shear effects can be neglected. - o e 1
1 ne -0 -& - 9% 3 oLa, 0
. . ) ) 12 12
As shear effects is being included in shape 17— e - 1O e Z@O7Ua, 0
functions, all matrices will be shear dependants Emsures _gdora,  £oa
that shear is fully represented by the formulateutef weer ge oo o o 0
element. [Kgg]: {2 &7 _E,:lHZ’LZai : HJ.’;za” (”_”‘)X
L LU
3.4 MATRICES IN LOCAL ELEMENT FRAME rOLE aften
4{25!2L4a5
Matrices used in eq. (34) are directly formed by Sym 144 Oh
application of Lagranges’ equations on kinetic atichin - (27) -

energies. For each element, non-integrated elemyenta
matrices are calculated in local frame, using gairsd
DoF and their derivatives. All matrices presentegteh
should be integrated over cross-sections and akheg
element. It can be expressed relatively to eleni2ofF

3.4.4 MASS MATRIX

Mass matrix, including rotatory inertia effects,

frame with eq. (44) and (45). comes from kinetic energy®order “velocity” terms.
1¢ . .
3.4.1 STIFFNESS MATRIX To™ [RCAIIYH EALY (68)
Classical stiffness matrix is derived from linear <5m> = <u,v, W, V', W V'V\/¢> (69)
terms of strain energy (including pure torsion t&ym _ , , )
1 0 -¢& -n - dLa, s 0
1 [ ]{ 00 0 5’ 5’ --n)
U +U; _§L<5c> ch 5C}dV (59) 1 0 o 0 0 E-£)
g oo fhx e
i i 12 12
where generalized DoF vector is M,]=0 § g, nita, ) (70)
D 12 12
<5C> = <U ,\/ ,V\/ ,¢> (60) Eszta; %
144 144
_ . . o nPLa?
Non-integrated symmetrical stiffness matrix is Sym o 0
then: I

with 11 =(§=&)* +(7-n)°
-6-



3.4.5 SUPPLEMENTARY STIFFNESS MATRIX 3.5 ELEMENTS ASSEMBLY

Doing the same for"? order “displacement” terms, In order to assemble matrices coming from each
the supplementary stiffness matrix can be found: element of the system, one has to express alirtatsices in
a unique reference frame, with common DoF between

T :EMJ >[K ]{J}dv (68) elements. For helicopter blades, the rotating frateched
stift = o \Ts /L sull"s to the rotor hub is chosen as a reference framepifoh,
<5S> :(u,v,w,\/',vxl,\/",vxl",@ (69) flapping and lead-lag angles. Blades are articdlate the
- e, -Um 4 rotor hub_ (or can be considered articulated fordrng)t__or
A Sy —B -8 A —om A oA @=my=(-4)8 hub), which means they can undergo large rotations
B -a & v Lzlf‘ L?? -(-n)B-(E-&)a space.
c g om “Bp TPp o gpase-ac : , , ,
12 12 ‘ ' The transformation matrix used is derived from
[K.,]=-p N e L O A (L Olindes-Rodrigues formula, using Tayt-Bryan likegles.
A %A LZTaWA O -noynE-E)8 Rotatlon_ of each element is obtained b_y applying
Ufa?  Uéma La, successively flapping £), lead-lag @) and pitch @)
Ay S A A Gl ) e
Es 2 angles.
Sym A Ena=nyyenE =€)
D J cosfBcosd —cospcosgsind +sinfBsing cosgsin B +cosBsindsing
(70) [M ] = sind cosd cosg —cosdsing
with A= sz+(232, B=§212+Q32, C=§212+§222, —-cosdsinB  cosgsinBsind +cosPBsing  cosBcosg —sinBsindsing R
a=Q,Q;, f=0,0, y=Q,Q,, (58)

D=(Q,(£-&)+Qu(r-n)) +Q2(E-£)2 +(7-1,)?)
= C(E-&)*+Br-n)* +2a(E-&)n-n)
3.6 MULTI-BODY NUMERICAL METHODS
3.4.6 GYROSCOPIC MATRIX - . . .

As the finite element is to be included into a
comprehensive rotorcraft analysis code to modétidated
blades possibly connected to various other elem@nts

. lead lag dampers), it has to be compliant with hddy
Toyro :L<JC>[CQ]{JC}dV, (o) =(3) (71), (72)  numerical methods requirements. For static purpasge

Damping-like terms lead to the gyroscopic matrix:

-a,m-n) | displacements must be permitted to find the eqiiiib
° % % 00 0 0 ~0,E-4) between external loads and interior efforts. The of a
o o0 or o ﬁg ] L2a”Q o) reduced model is alsp needed as the trim. calculagbes
1 M 2 3 2 4 N on a harmonic analysis of the blade dynamic modes.
0 -Qy) -Qy I_12%92‘( 123,702” Q1 =1m) . T :
Q€0 -n,) Large displacement capability implies to update the
lc.]- 24 o0 ° o +0,EE-E) blade position in space and its deformation duririg.
0 0 0 Q107 ~11) Several approaches can be employed.
, e To evaluate the element the co-rotational
0 0 ﬁ[os“"'”t) ] formulation [10] is used as an enhancement of thitef
22 "%f4)1 element code programmed for test purpose. Thihodet
Antisym y 30[93”(" ) ] consists in 4 main steps. First deformation fisldomputed
2 98] from external loads. Then the blade position isated. Due

(73) to this new position the beam is abnormally stredctvhich

leads to internal forces. The geometrical stiffnessshen
updated and the calculation returns to step 1,| wami
equilibrium position is found between external lpaahd
internal forces.

In a comprehensive rotorcraft analysis code, rigid
body motions are managed globally, and the bladdemo
only needs to know the position of interfaces nodeg.

3.4.7 CENTRIFUGAL FORCE VECTOR

At last, centrifugal forces are deduced from
remaining terms:

Tos :L<ch>{5cf}dv’ <5c >:<53> (74), (75)  nodes that are connected to other model. At eaeph st
AGp+X) = B +1) = UEn + ) internal loads should be evaluated to correctly maot@ the
B(Ex + &) =a(74 +17) = Y(Xy +X) centrifugal stiffness of the blade.
Cl7n+m) = BXa +X) = (&, +€)
_‘:52;‘:3:?‘?:’7;:”(5{:?) As the model is only seen by the comprehensive
Y 7 T WIS A code by its interface nodes, it can be reduced gusin
wf = P) S (F ASOW + )+ BE@ ) + (6 + O) (76) substructure techniques such as Craig and Bampébhoah
L3 An(x, + %)+ A1, 1)+ 0+ 6) [23]. This permits to reduce the number of degreés
e (- + BE, +Cr, (6~ £) - Cén, freedom to be trimmed by the code.
+ENE = Blxp +X)(E = &)+ y(x +X)(7 = 17,)
+alia+ma-n) - &+ HE- &)




4. NUMERICAL EXAMPLE First a modal analysis is performed without rotatio
to verify that the coupling is correctly modeleda@ped —
The presented finite element is imp|emented in free bOUndary conditions are used. Results show tha

MATLAB to assess the model capabilities. Model @ation ~ frequencies are very close to the reference caionla

is based on analytical and numerical investigati@everal ~ Focusing on sixth mode, here reconstructed from1tbe

test beams are used to show separately the goodesults, one can appreciate the coupling behaviothe

implementation of each required effects to preelficiently beam.

the real dynamic behavior of helicopter blades.

Table 1
An acceptable model assessment requires Natural frequencies of the clamped-free beamsit re
controlling two main aspects of the test case:dda input ~ Mode REF (Hz) 1D finite element Error
for the developed beam model, and the 3D finitenelet _number (Hz) (%)
model used to calculate reference results. Thisasgpwhy 1 28.4 28.0 -1.3
a present blade can’t be used to assess the ntodehosite 2 41.232 41.1 -0.4
twisted and curved blades are hard to model withfiBibe 3 154.0 152.4 -1.0
element and cross-section characteristics caloulati 4 194.9 197.1 11
uncertainties could distort results. Instead, odeali test 5 491.0 495.5 0.9
case is presented here to justify the capability thué 6 596.6 595.4 0.2
developed finite element to model helicopter blades 7 916.2 930.5 1.6
8 1011.1 1041 3.0
9 1215.5 1240.7 2.1
4.1 TWISTED AND CURVED BEAM 10 1680.5 1707.4 1.6
The test case is a curved and twisted homogeneou Made B : 595.3519Hz
beam. Its neutral fiber describes a quadrant, weth 88
important twist angle of 90 degrees at its tip. Tness- |, EE

section is a half of disc which has its shear genfkset
from the inertia center. 0

Beam characteristics

Length : 1m
Diameter : 35mm v
Twist angle : 90°

Young modulus : 2E11Pa

Poisson coef. : 0.3

Density : 7800kg/rh 100
Shear coefficients :
ky=0.766 kz=0.863
Figure 7 : Cross section Shear center offset : 3mm

Figure9: Torsion-bending coupling on mode 6

Adding rotational effects with a rotation speed of
rad/s, another modal analysis is performed to
demonstrate the good behaviour of the element under
centrifugal loads.

Table 2

Natural frequencies of the clamped-free beam iatian

This beam has a strong torsion-bending coupling Mode REF (Hz) 1D finite element Error

behavior coming for both its shape and its sheatece number (Hz) (%)
offset. Its characteristics are way more severa thase of 1 204 291 11
any blade design. We assume that if the preseiie fin 2 44.0 44.2 0.5
element can model such a beam, it will be perfestiyed 3 156.4 155.1 0.8
for blade modeling. 4 195.9 200.1 21
\ 5 493.6 498.9 1.1

6 599.2 602.6 0.5

- 7 923.7 931.1 0.8

8 1013.6 1044.5 3.1

9 1218.6 1244.0 2.1

10 1681.7 1708.4 1.6

Figure8: Twisted and curved beam ,
(NASTRAN) Again the results show the good accuracy of the

proposed model, with the same trends for the daghi
The reference results are computed with stiffening and relative error remaining quite tlaene at rest
NASTRAN 3D finite elements. HEX20 elements are OF Inrotation.

chosen with 38 nodes to describe the cross-sectiatour The finite element proves to be well suited to
and 50 elements spanwise. Only 40 elements wexkfose ~Model curved and twisted beam having a strong @ugipl
our 1D model. behavior which is the case for helicopter blades.
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5. CONCLUSION (6]

A nonlinear beam finite element is formulated in
this paper to enhance helicopter blade modeling for
comprehensive rotorcraft analysis codes.

First, governing equations were derived from an
energetic approach, making assumptions compliarth wi
blade characteristics such as twist or compositesser
sections. This step ensures keeping in the model al
significant effects acting on the blades, especiakrtia and
rotating ones.

The novelty of this work comes from the numerical
transcription of these equations, using the wedtivin finite
element method with some extra features addedagsicil
beam element. Shape functions are chosen to aheadr s

(8]

(9]

locking and to reduce the number of elements neeldteake (10]
two issues are quite convenient for helicopter élad
modeling. Shear can be neglected for static purpnge
becomes important in dynamic analysis so that doeaing ~ [11]
would have limited the use of the element, and a

comprehensive code claims for a limited numbereagfrdes
of freedom for efficiency matters. Eventually, effowere
made to properly include in the element formulatiaih
effects highlighted in the theoretical development: [12]
composite cross-sections, evolutionary twist, gedos
nonlinearity and rotational effects including gyeopic and

spin softening matrices.

The element capabilities have been investigated[13]
through numerical test cases in order to contrad th
assessment process. The presented test case hbiedxh
the good behavior of the finite element for extrecneved
and twisted beams validating though the elemenaluéfy
to model an actual helicopter blade with its geoivait
specificities. Non-homogeneous cross-sections nmuglés
dependant of homogenization step, thus test casig u
those multi-material sections should be related the
homogenization technique which is not the matterehe
Those results need to be confirmed by experimemsiti
however numerical tests are very encouraging.

The proposed finite element should improve greatly [17]
present numerical blade models in comprehensiwaeft
analysis codes as its formulation was designed itfor
ensuring in particular the compliancy with multidyo
requirements.

(14]

(15]

(16]

(18]
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