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ABSTRACT 

 
 
Structural, shape and performances optimization in 

helicopter rotor leads to design composite blades initially 
curved and twisted. This design yields a highly coupled 
behavior between torsion, longitudinal and bending motions 
of blades. A non-linear Timoshenko-like straight beam finite 
element is proposed to predict the static deformation under 
aerodynamic and centrifugal loads and achieve dynamic and 
stability analysis. This elastic model is to be implemented in 
a comprehensive rotorcraft analysis code, which means 
accuracy, reliability and calculation time compromise. 
Model validation is based on analytical and numerical 
investigations. The developed model reveals to be very 
accurate for beams with extreme shapes compared to blade 
design. It is now expected to improve prediction quality for 
full helicopter simulation tools and particularly for rotor 
dynamic analysis.    
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1. INTRODUCTION 
 
Blade elastic behavior modeling is an important 

research topic for improvement of comprehensive rotorcraft 
analysis codes especially for dynamic and stability analysis, 
vibratory loads and performance calculations. The use of 
composite materials and new shapes for blades such as 
swept tip or evolutionary twist lead to study and develop 
beam theories in order to properly model both structural 
coupling phenomena and rotational effects. 

Many efforts have been done to limit 
approximations when writing the equations of motion for 
rotating beams with arbitrary cross-sections. Early works 
[2],[3] introduced twist effects and coupling between 
bending and torsion motions. Ferraris’ study on 
homogeneous cross-section [1] in the field of turbo 
machinery blade modeling makes clearly appear all coupling 
terms due to gravity and shear center non coincidence and 
adds to it twist dependency, geometrical non-linearity and 
rotational effects. Equations are obtained using Hamilton 

principle applied to strain and kinetics energies explicitly 
derived from beam fibers axial elongation. Hodges is one of 
the first to use a so-called “exact” method for helicopter 
blade modeling [4]. His work is widely used since then for 
composite blade modeling [11], [13], cross-sectional 
characteristics calculation [12], and comprehensive analysis 
codes assessment [6]. In those studies, both shear and 
warping effects are taken into account for equations 
development. Some other authors are particularly interested 
in initially curved beam, among them Borri and al. [14] and 
Geradin and al. [15]. Since helicopter blades can be 
considered as thin walled composite beams, Librescu and al. 
[16] give some elements in this way. 

Numerical implementation of calculated equations 
is mainly achieved using Finite Element Method (FEM). For 
classical dynamic purpose, FEM is convenient and quite 
accurate if one pays attention to finite element capabilities. 
Another current method relies on dynamic stiffness matrix 
derived from frequency-dependant shape functions cutting 
down the number of elements needed. This method is often 
called Spectral Finite Element Method (SFEM) in literature. 
Chandrashekhara and al. [17] Banerjee and al. [19] or 
Mahapatra and al. [18] developed more and more complete 
models, all based on Wittrick and Williams algorithm [20] 
for natural frequency calculation. 

As the beam elastic model developed in this paper 
is to be implemented in a comprehensive analysis code, 
FEM is retained, blades being meshed anyway for 
aerodynamic purpose. Regarding for full rotational capable 
elements, one can refer to Lalanne and Ferraris’ book [5] 
both for rotating and fixed frame. Early work of 
Przemieniecki [7] introduced Timoshenko’s shear 
coefficient [21] [22] in both stiffness and mass elementary 
matrix. Batoz and Dhatt [9] give a global view of beam 
finite element modeling undergoing many effects. The main 
contribution of our work is the introduction of shear effect 
in all matrices, including geometrical stiffness matrix and 
centrifugal force work. Moreover, an eight-degree-of-
freedom per node finite element based on cubical shape 
functions is developed to increase convergence speed and 
avoiding shear locking effect [8]. Full multi-material cross-
section capability is also added to [1]. At last, large 
displacement capability is provided to the finite element 
using co-rotational formulation from Criesfield work [10]. 
This element should fit all requirements for composite 
curved and twisted blade for articulated and rigid helicopter 
hubs.   
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2. EQUATIONS OF MOTION 
 
Beam equations of motion are based on explicit 

writing of fibers axial elongation and velocity field as it is 
done in [1]. This method permits an exact development of 
strain and velocity fields, approximated by a second order 
scheme which leads to non-linear equations. Neutral fiber is 
taken as the reference axis for beam deformation, implying 
that without shear cross-sections initially perpendicular to 
this axis remain undeformed when small deformations are 
applied. Pure torsion motion is supposed to be uncoupled 
from bending and longitudinal motions, with this 
assumption it can be applied separately to the beam.  

 
2.1 BEAM STRAIN FIELD 

 
In beam theory, the effect of the strain field is 

limited to fibers axial elongation and torsion angle, e.g. to 1 
dimension even if the beam is curved or twisted in space. 
One can deduce strain energy by knowing how beams fibers 
are stretched.  First step consists in calculating fibers length 
before strain field is applied. 

 
Figure 1 : Length of an undeformed fiber of the beam 

 
For a short piece of beam, considered straight, with 

a length dx  between the elastic centers 1N  and 2N  of its 

two extreme sections, the length of an unspecified fiber 

21MM  is related to the initial twist angle per length unit θ ′  

by : 
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Let us now consider the displacement field for one 

of the beam cross-section. 

 
Figure 2 : Decomposition of beam deformation 

 
First all points in the cross-section undergo torsion 

motion turning by a twist angle φ  around the shear center 

T  . Then longitudinal motion u  and bending motions v  
and w  are applied.  

Considering a point M  of the initial cross-section, 
'M  is its counterpart after torsion motion and ''M  its 

counterpart after bending and axial motions.  
M  and T are simply linked by their coordinate in 
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By the same way 'M  and T are linked in the 

twisted frame, which give in R frame 
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Introducing small bending angles ξφ  around ξ
r

 and ηφ  

around ηr , one can retrieve the link between 'M  and ''M  
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with 'Mη  and 'Mξ  the coordinates of 'M  in R frame. 

 
The length of the fiber 21MM after all motions 

being applied to cross-sections can be deduced from 

equations (1) to (4) by decomposing the vector  '''' 21 MM . 

''''

''''''''
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Finally axial elongation of beam fibers can be 

simply expressed as : 
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=ε  (6) 

 
 Keeping in second order terms, the strain field 
within cross-section contains non-linear terms coupling each 
motion with all other. 
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with k and h  two constants depending on points 

coordinates and using ( )
dx

d=′   

 
In addition, Timoshenko’s beam theory is used to 

link bending angles to lateral displacement: 
 

ξηφ Cv +′=  (10) 

ηξφ Cw +′−=  (11) 
 
 

2.2 BEAM VELOCITY FIELD 
 
To introduce rotational effects in the velocity field 

of the beam, consider the fixed frame ZYXOR
rrr

,,,0 = . 

Beam is rotating around Z
r

at a speed of Ω . Position of a 
point 1M after application of the displacement field is 

decomposed as: 
 

'''''' 11111111 MMMTTNNNONOM ++++=  (12) 

 

 
Figure 3 : Cross-section displacement field  

 
Beam is considered as straight between a first 

cross-section of elastic centerN and the current cross-

section. Point O  coordinates in R  frame is AAAx ηξ ,, . 

Using expressions (3) and (4), one can find : 
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Velocity of point 1M  in the rotating frame R is then: 
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the rotational vector expressed in R frame. 

 
2.3 LAGRANGE’S EQUATIONS 

 
Applying Lagrange’s equations to the strain and 

kinetic energies is a very common way to determine 
equations of motion using Hamilton’s principle. Without 
damping and external forces other than centrifugal forces, 
equations are: 
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iq  : generalized coordinates,  

T  : kinetic energy,  U  : strain energy. 
 
 

2.3.1 STRAIN ENERGY 
 

Strain energy can be deduced from strain field all along 
the beam by adding to it the pure torsion strain energy: 

 

TL UUU +=  (18) 
 
Torsion energy is classically: 
 

∫ ′=
L

TT dxGJU 2

2

1 φ  (19) 

 
with TJ  the cross-section torsion constant, G its shear 

modulus and L the beam length. 
 

Strain energy due to beam elongation is : 
 

∫=
V

L dVEU 2

2

1 ε  (19) 

 
with E the Young modulus of the cross-section. 
 
 Equation (19) is developed in details by the 
introduction of the non-linearity of the elongation stressed in 
equation (7) and of the shear energy resulting from beam 
deformation. 
 

shearnlnlnllllL UUUUU +++= −−−  (20) 
 

One can retrieve classical linear strain energy: 
 

∫=−
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 Shear energy results from introduction of 
Timoshenko’s theory in eq. (10) and (11) when linking 
bending angles to lateral displacements: 
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vx ′+−= ηξ φε2  (23) 

wx ′+= ξη φε2  (24) 
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Introducing ξk  and ηk , the Timoshenko’s shear 

coefficients for each bending axis defined as: 
 

∫= dS
Sk

T
xξ

ξ

ξ σ
2

   ,         ∫= dS
Sk

T
xη
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η σ
2

 (25), (26) 

 
with ξT  and ηT  transverse forces applied to the cross-

section and S its area. kSrepresents the sheared area also 
often called “reduced section”. 
 
 Transverse shear stresses are then: 
 

ξξξ εσ xx Gk2=  (27) 

ηηη εσ xx Gk2=  (28) 
 
 From which one can get:  
 

∫ +=
V

xxshear dVkkGU ))(4
2

1 22
ηηξξ εε  (29) 

 
Non-linear terms give: 

 

∫∫ ==−
V

nl
V

nllnll dVdVEU εσεε 0  (30) 

 
with 0σ  the initial axial stress within the beam. 

 
At last remaining terms can be neglected as cross 

products between non-linear terms are high order terms. 

∫=−
V
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2.3.2 KINETIC ENERGY 
 
Kinetic energy is directly calculated from the 

velocity field along the beam: 
 

dVVT
V

M

2

2

1
∫= ρ  (32) 

 
with ρ the density of the cross-section. 

 
Kinetic energy terms can be gathered depending on 

their order and their derivation with respect to time. 2nd 
order “velocity” terms lead to define a mass matrix. A 
stiffness matrix can be built with 2nd order “displacement” 
terms, while cross products between velocity and 
displacement terms make appear the gyroscopic matrix. At 
last first order “displacement” terms correspond to 
centrifugal force work. Other terms disappear when 
Lagranges’ equations are applied. 
 

othercfgyrostiffmass TTTTTT ++++=  (33) 

 

 
2.3.3 MATRIX FORM OF EQUATIONS 

 
Introducing results from (21),(29),(30) and (32) in 

equation (17) the final equations of motion governing the 
rotating beam movements can be formed.  
 

( ) extCSG FFqKKKqCqM +Ω=Ω−++Ω+ )()()()( 22
0σ&&&  

 (34) 
 

Conveniently the matrix form of the equations 
makes appear classical mass and stiffness matrices but also 
some other terms detailed here after. 

 
M  : Mass matrix, including rotatory inertia 
C  : Gyroscopic matrix (Coriolis effect) 
K  : Stiffness matrix, including shear stiffness and  pure 
torsion stiffness 

GK  : Stress stiffening matrix (making equations

 nonlinear) 

SK  : Spin softening matrix 

CF  : Centrifugal force 

extF  : Other external forces 

 
 

3. FINITE ELEMENT DEFINITION 
 
The finite element proposed in this paper is an 

advanced beam element, undergoing shear effects without 
shear locking, having non-classical degrees of freedom to 
reduce the number of elements needed, and being compliant 
with multi-body numerical methods requirements.     

 
3.1 SHAPE FUNCTIONS 

 
The choice of shape functions is one of the main 

issues when formulating a finite element, conditioning 
Degrees of Freedom (DoF) that will be included in the 
model, and the accuracy of results. 

 
Classical cubical shape functions are chosen for 

lateral displacements in order to link corresponding bending 
angles (eq. 10 and 11). 

3
8

2
765)( xaxaxaaxv +++=  (35) 

3
12

2
11109)( xaxaxaaxw +++=  (36) 

 
 The innovation of our work is to choose again 

cubical shape functions for longitudinal displacement and 
torsion motion. 

3
4

2
321)( xaxaxaaxu +++=  (37) 

3
16

2
151413)( xaxaxaax +++=φ  (38) 

 
 These shape functions involve the inclusion of 
longitudinal and torsion motions derivatives in the element 
DoF. This permits not to assemble these derivatives of two 
successive elements, e.g. to let them free. Doing this, one 
can ensure torque and longitudinal load transmission 
between two elements with different cross sectional 
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characteristics, with no need for a mesh refinement around 
the transition zone. 

A simple example (fig. 4) can exhibit the interest of 
such a choice. Torsion momentum is related to the torsion 
angle through the cross-sectional inertia and material 
properties: 

 

 
x

IEM
∂
∂= 1

111

φ
      ,   

x
IEM

∂
∂= 2

222

φ
 (39),(40) 

 
Torque is to be transmitted from element 1 to 

element 2. Elements have different cross-sections at their 
common node and are possibly made of different materials: 

21 MM =           ,        2211 IEIE ≠  (41),(42) 
 

xx ∂
∂≠

∂
∂ 21 φφ

 (43) 

 
Eq. (39), (40) and (42)  imply from (41) that torsion 

angle derivatives for both element remain free, which cannot 
be ensured if these derivatives are not permitted DoF of the 
finite element. Same demonstration can be performed for 
longitudinal load transmission. 
 

 
Figure 4 : Torque transmission between two 

different elements 
 
 

3.2 DEGREES OF FREEDOM 
 
Considering now a single node of one beam 

element, the minimum number of independent DoF is half 
the number of unknowns in shape functions (35)-(38). As 
for classical 3D beam finite elements, 6 DoF are chosen to 
locate the node in space. Derivatives of longitudinal 
displacement and torsion motion are added. In order not to 
assemble those 2 DoF between two elements, each node has 
to separate contributions coming from left-side element and 
right-side element (resp. l and r subscripts). 

 
Figure 5 : Beam element node degrees of 

freedom 
 
Finally each node has 10 attached DoF, which 

means 20 DoF for one beam element: 
 

dgdgdgdgN uuwvuuuwvu 22222222221111111111 ,,,,,,,,,,,,,,,,,,, φφφφφφφφφφδ ηξηξ ′′′′′′′′=  

 (44) 

Shape functions coefficients 1a  to 16a are related to 

DoF by matrix A  : 

[ ]{ }NA
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
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16

2

1
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 (45) 

 
Coefficients of equations (37) and (38) are easily 

found using element boundary conditions for longitudinal 
and torsion motions. 
 

1)0( uu = , 2)( uLu =  (46) 

duu 1)0( ′=′ , guLu 2)( ′=′  (47) 

1)0( φφ = , 2)( φφ =L  (48) 

d1)0( φφ ′=′ , gL 2)( φφ ′=′  (49) 
with L the element length. 
 
 For bending motions, shear effects have to be 
added in order to correctly derive shape functions 
coefficients. 

 
3.3 INTRODUCTION OF SHEAR 

 
Transverse shear effects modify the beam behavior 

in bending motions, adding cross-section rotations to ones 
produced by lateral displacements. Those displacements and 
bending angles are cinematically linked together trough eq. 
(10) and (11) with Timoshenko’s theory. Developing this 
relation between DoF, one can build a finite element free 
from shear locking as explained in [8]. 

 

 
Figure 6 : Beam equilibrium 

 
Let’s consider only one bending motion. Fig. 6 

exhibits how forces and momentum are balanced within a 
short part of the beam. Eq. (23), (25) and (27) can be 
combined to retrieve classical relation between shear 
transverse force and Timoshenko’s supplementary shear 
rotation of cross-section (Eq. 10). 
 

SGkCT ξξ=  (50) 
 

From static equilibrium we have: 

 0=
∂
∂

x

T
           ,          T

x

M =
∂

∂
 (51), (52) 

 
From theory of strength of materials we have: 

EI

M

x
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∂
∂ ηφ

 (53) 



 
 

 - 6 - 

Deriving eq. (10) gives:  
 

3

3

2

2

x

v

x ∂
∂=

∂
∂ ηφ

 (54) 

 
Eventually eq. (50) to (54) lead to 

 

3

3

x

v

Gk

EI
C

∂
∂=

ξ
ξ  (55) 

 
As for longitudinal displacement and torsion angle, 

shape function coefficients are deduced from boundary 
conditions at element ends applied to eq. (35) with relations 
(10) and (55) between DoF. 
 

1)0( vv = , 2)( vLv = , 1)0( ηη φφ =  et 2)( ηη φφ =L  (56) 
 

ξηφ Cxaxaa
x

v −=++=
∂
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2
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aL
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x

v ξ
ξ =⇒=

∂
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 (58) 

 

with 2

12

SLGk

EI
a

ξ
ξ = the shear coefficient introduced by [7], 

conveniently being almost null for long slender beams for 
which shear effects can be neglected. 
 
 As shear effects is being included in shape 
functions, all matrices will be shear dependant. This ensures 
that shear is fully represented by the formulated finite 
element. 
 
 

3.4 MATRICES IN LOCAL ELEMENT FRAME 
 
Matrices used in eq. (34) are directly formed by 

application of Lagranges’ equations on kinetic and strain 
energies. For each element, non-integrated elementary 
matrices are calculated in local frame, using generalized 
DoF and their derivatives. All matrices presented here 
should be integrated over cross-sections and along the 
element. It can be expressed relatively to element DoF 
frame with eq. (44) and (45). 

 
3.4.1 STIFFNESS MATRIX 

 
Classical stiffness matrix is derived from linear 

terms of strain energy (including pure torsion terms): 
 

[ ]{ }∫=+−
V
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where generalized DoF vector is 
 

φδ ′′′′′′= ,,, wvuc  (60) 

 
Non-integrated symmetrical stiffness matrix is 

then: 
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3.4.2 SHEAR STIFFNESS MATRIX 

 
Shear effects result in an additional stiffness matrix 

coming from eq. (29) considering relation (55). 
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3.4.3 STRESS STIFFNESS MATRIX 

 
Stress stiffness matrix can be calculated once the 

mean axial stress is computed: 
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3.4.4 MASS MATRIX 
 
Mass matrix, including rotatory inertia effects, 

comes from kinetic energy 2nd order “velocity” terms. 
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with 22 )()( ttTI ηηξξ −+−=  
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3.4.5 SUPPLEMENTARY STIFFNESS MATRIX 
 
Doing the same for 2nd order “displacement” terms, 

the supplementary stiffness matrix can be found: 
 

[ ]{ }∫=
V

ssgsstiff dVKT δδ &&

2

1  (68) 

φδ ,,,,,,, wvwvwvus ′′′′′′′′=  (69) 
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with 2

3
2
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3
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2
2
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3.4.6 GYROSCOPIC MATRIX 

 
Damping-like terms lead to the gyroscopic matrix: 

 

[ ]{ }∫=
V

cgcgyro dVCT δδ & ,       sc δδ =  (71), (72) 
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3.4.7 CENTRIFUGAL FORCE VECTOR 

 
 At last, centrifugal forces are deduced from 
remaining terms: 
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V

cfcgcf dVFT δ& ,     scf δδ =  (74), (75) 
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3.5 ELEMENTS ASSEMBLY 
 
In order to assemble matrices coming from each 

element of the system, one has to express all this matrices in 
a unique reference frame, with common DoF between 
elements. For helicopter blades, the rotating frame attached 
to the rotor hub is chosen as a reference frame for pitch, 
flapping and lead-lag angles. Blades are articulated on the 
rotor hub (or can be considered articulated for rigid rotor 
hub), which means they can undergo large rotations in 
space.  

 
The transformation matrix used is derived from 

Olindes-Rodrigues formula, using Tayt-Bryan like angles. 
Rotation of each element is obtained by applying 
successively flapping (β ), lead-lag (δ ) and pitch (θ ) 

angles. 
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3.6 MULTI-BODY NUMERICAL METHODS 

 
As the finite element is to be included into a 

comprehensive rotorcraft analysis code to model articulated 
blades possibly connected to various other elements (e.g. 
lead lag dampers), it has to be compliant with multi-body 
numerical methods requirements. For static purpose large 
displacements must be permitted to find the equilibrium 
between external loads and interior efforts. The use of a 
reduced model is also needed as the trim calculation relies 
on a harmonic analysis of the blade dynamic modes. 
 

Large displacement capability implies to update the 
blade position in space and its deformation during trim. 
Several approaches can be employed.  

To evaluate the element the co-rotational 
formulation [10] is used as an enhancement of the finite 
element code programmed for test purpose.  This method 
consists in 4 main steps. First deformation field is computed 
from external loads. Then the blade position is updated. Due 
to this new position the beam is abnormally stretched which 
leads to internal forces. The geometrical stiffness is then 
updated and the calculation returns to step 1, until an 
equilibrium position is found between external loads and 
internal forces.  

In a comprehensive rotorcraft analysis code, rigid 
body motions are managed globally, and the blade model 
only needs to know the position of interfaces nodes, e.g. 
nodes that are connected to other model. At each step 
internal loads should be evaluated to correctly compute the 
centrifugal stiffness of the blade. 

 
As the model is only seen by the comprehensive 

code by its interface nodes, it can be reduced using 
substructure techniques such as Craig and Bampton method 
[23]. This permits to reduce the number of degrees of 
freedom to be trimmed by the code.  
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4. NUMERICAL EXAMPLE 
 
The presented finite element is implemented in 

MATLAB to assess the model capabilities. Model validation 
is based on analytical and numerical investigations. Several 
test beams are used to show separately the good 
implementation of each required effects to predict efficiently 
the real dynamic behavior of helicopter blades. 
 

An acceptable model assessment requires 
controlling two main aspects of the test case: the data input 
for the developed beam model, and the 3D finite element 
model used to calculate reference results. This explains why 
a present blade can’t be used to assess the model: composite 
twisted and curved blades are hard to model with 3D finite 
element and cross-section characteristics calculation 
uncertainties could distort results. Instead, one ideal test 
case is presented here to justify the capability of the 
developed finite element to model helicopter blades. 

 
 

4.1 TWISTED AND CURVED BEAM 
 
The test case is a curved and twisted homogeneous 

beam. Its neutral fiber describes a quadrant, with an 
important twist angle of 90 degrees at its tip. The cross-
section is a half of disc which has its shear center off-set 
from the inertia center.  

 

 
Figure 7 : Cross section 

 

Beam characteristics : 
 
Length : 1m 
Diameter : 35mm 
Twist angle : 90° 
Young modulus : 2E11Pa 
Poisson coef. : 0.3  
Density : 7800kg/m3 
Shear coefficients : 
ky=0.766 kz=0.863 
Shear center offset : 3mm  

 
This beam has a strong torsion-bending coupling 

behavior coming for both its shape and its shear center 
offset. Its characteristics are way more severe than those of 
any blade design. We assume that if the present finite 
element can model such a beam, it will be perfectly suited 
for blade modeling. 

 
Figure 8 :  Twisted and curved beam 

(NASTRAN) 
 
The reference results are computed with 

NASTRAN 3D finite elements.  HEX20 elements are 
chosen with 38 nodes to describe the cross-section contour 
and 50 elements spanwise. Only 40 elements were used for 
our 1D model. 

First a modal analysis is performed without rotation 
to verify that the coupling is correctly modeled. Clamped – 
free boundary conditions are used. Results show that 
frequencies are very close to the reference calculation. 
Focusing on sixth mode, here reconstructed from the 1D 
results, one can appreciate the coupling behavior of the 
beam. 

 
Table 1  
 Natural frequencies of the clamped-free beam at rest 
Mode 
number 

REF (Hz) 1D finite element 
(Hz) 

Error 
(%) 

1 28.4 28.0 -1.3 
2 41.232 41.1 -0.4 
3 154.0 152.4 -1.0 
4 194.9 197.1 1.1 
5 491.0 495.5 0.9 
6 596.6 595.4 0.2 
7 916.2 930.5 1.6 
8 1011.1 1041 3.0 
9 1215.5 1240.7 2.1 
10 1680.5 1707.4 1.6 

 

 
Figure 9 : Torsion-bending coupling on mode 6 
 
Adding rotational effects with a rotation speed of 

100 rad/s, another modal analysis is performed to 
demonstrate the good behaviour of the element under 
centrifugal loads. 

 
Table 2 
Natural frequencies of the clamped-free beam in rotation 
Mode 
number 

REF (Hz) 1D finite element 
(Hz) 

Error 
(%) 

1 29.4 29.1 -1.1 
2 44.0 44.2 0.5 
3 156.4 155.1 -0.8 
4 195.9 200.1 2.1 
5 493.6 498.9 1.1 
6 599.2 602.6 0.5 
7 923.7 931.1 0.8 
8 1013.6 1044.5 3.1 
9 1218.6 1244.0 2.1 
10 1681.7 1708.4 1.6 

 
Again the results show the good accuracy of the 

proposed model, with the same trends for the centrifugal 
stiffening and relative error remaining quite the same at rest 
or in rotation.  

The finite element proves to be well suited to 
model curved and twisted beam having a strong coupling 
behavior which is the case for helicopter blades. 
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5. CONCLUSION 
 
A nonlinear beam finite element is formulated in 

this paper to enhance helicopter blade modeling for 
comprehensive rotorcraft analysis codes.  

First, governing equations were derived from an 
energetic approach, making assumptions compliant with 
blade characteristics such as twist or composite cross-
sections. This step ensures keeping in the model all 
significant effects acting on the blades, especially inertia and 
rotating ones. 

The novelty of this work comes from the numerical 
transcription of these equations, using the well-known finite 
element method with some extra features added to classical 
beam element. Shape functions are chosen to avoid shear 
locking and to reduce the number of elements needed. Those 
two issues are quite convenient for helicopter blade 
modeling. Shear can be neglected for static purpose but 
becomes important in dynamic analysis so that shear locking 
would have limited the use of the element, and a 
comprehensive code claims for a limited number of degrees 
of freedom for efficiency matters. Eventually, efforts were 
made to properly include in the element formulation all 
effects highlighted in the theoretical development: 
composite cross-sections, evolutionary twist, geometrical 
nonlinearity and rotational effects including gyroscopic and 
spin softening matrices.  

The element capabilities have been investigated 
through numerical test cases in order to control the 
assessment process. The presented test case has exhibited 
the good behavior of the finite element for extreme curved 
and twisted beams validating though the element capability 
to model an actual helicopter blade with its geometrical 
specificities. Non-homogeneous cross-sections modeling is 
dependant of homogenization step, thus test cases using 
those multi-material sections should be related to the 
homogenization technique which is not the matter here.  
Those results need to be confirmed by experimentations; 
however numerical tests are very encouraging.  

The proposed finite element should improve greatly 
present numerical blade models in comprehensive rotorcraft 
analysis codes as its formulation was designed for it, 
ensuring in particular the compliancy with multi-body 
requirements. 
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