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Abstract 

A vital aspect of aircraft acceptability is its 
ability to operate under extreme conditions 
without requiring an excessive pilot 
workload. In recent years, the ability to 
predict this somewhat esoteric quantity 
using computational techniques has been 
pursued. Apart from enabling these tasks to 
be carried out with improved efficiency and 
safety, it has also provided the ability to 
perform tasks under tightly controlled flight 
conditions. This is of major importance to 
operation in severe atmospheric conditions 
where flight in proximity to vertical surfaces 
is common. 
 
Rapidly increasing computing power has 
allowed flight simulation to become available 
at increasingly modest costs. Consequently, 
the capability to examine the performance of 
an aircraft in relation to the corresponding 
pilot workload can be realistically achieved 
at an early stage of the design. The 
research to be described in this paper 
comprises an investigation into using such 
low cost simulation software and combining 
it with advanced processing techniques to 
arrive at a method of quickly estimating pilot 
workload and thereby rapidly assessing the 
implications of design modifications. 
 
The method described records the lateral 
and longitudinal control stick inputs the pilot 
makes to perform an aircraft manoeuvre for 
a variety of flight conditions and handling 
qualities. This process inevitably produces 
large amount of data which will require 
efficient processing. In order to achieve this, 
the data is then smoothed and reduced 
using Fourier and wavelet analysis 
technique. It was considered that conversion 
of these results to a workload rating would 
be an ideal candidate for a neural network, 
due to the fuzzy and subjective nature of this 
assessment. This neural network is trained 

with the results obtained from the signal 
breakdown as inputs and the pilot’s 
assessment of workload as the target 
output. This process is validated by 
presenting previously unseen data to the 
network and continuing the training until 
suitably accurate workload ratings are 
predicted, resulting in a system capable of 
measuring workload given just control 
inputs. 
 
The advantages of this method over existing 
methods relying on direct pilot feedback are 
clear. Workload can be estimated at an early 
stage of the design process using simulator 
software, and responses to changes given 
almost instantly using a real-time display of 
workload. The novel use of a neural network 
makes the method adaptive to changes, and 
the ability to function correctly with a variety 
of aircraft and pilots without requiring 
fundamental changes to the algorithm, or 
any in-depth technical knowledge of this 
research. 
 
The study has shown promise, in that it 
corresponds well with the Bedford rating 
given by the pilot, and it therefore warrants 
further investigation. 
 

 
Nomenclature 

 
CSD  Control Stick Displacement 
FS2002  Flight Simulator 2002 
WR  Workload Rating 
ms  milli-second 
 
Ei  Neuron output layer error 
wij  Error gradient 
outi  Sigmoid function output 
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Introduction 

Many different definitions of workload exist, 
for both pilots and system operators in 
general. Many of these definitions are 
conflicting, and some reports give no 
definition at all. For example, Federal 
Aviation Regulation (FAR) 25 lays out 
requirements for crew workload, and is a 
legal constraint for airworthiness 
certification. It uses such phrases as 
“analysing and demonstrating workload” and 
“the workload on individual crew members”, 
yet it offers no definition of what workload 
actually is, or how it should be measured. 
Some definitions are based on time 
concepts, where the workload is evaluated 
as the time required to complete a task over 
the time available to complete it [1]. Others 
are far more complex and psychological in 
nature, centered on the cognitive capacity of 
the operator, namely the pilot. For 
engineering purposes it is important to have 
an exact definition. Unfortunately, “there is 
no empirical technique for proving a 
definition”, and indeed “when the human 
enters the equation we do well to avoid a 
foolish search for precision where none 
exists” [2]. For the purpose of this report, 
workload is considered based on the 
general definition by Kantowitz [3], phrased 
in Parasurman & Mouloua [4] as: 
 
 “Pilot workload is defined as an intervening 
variable, similar to attention, that modulates 
or indexes the tuning between the demands 
of the environment and the capacity of the 
operator. As an intervening variable, 
workload cannot be directly evaluated or 
observed. Instead, it is a conceptual, 
multifaceted construct that must be inferred 
from changes in observable data” 
 

Workload Influences 

The consequence of recent advances in 
aircraft performance and avionics has been 
an explosion in the complexity and sheer 
quantity of information that is available to 
today’s pilot. This has resulted in a dramatic 
increase in the pace of flight operations and 
reducing the pilot’s available processing and 
decision time [5]. Workload, it would appear, 

can only increase without positive steps 
being taken to control it.  
The workload experienced by a pilot during 
flight consists of many different tasks. These 
may include: 
•  Instrument monitoring  
• Lookout (scanning the local airspace for 
traffic) 
• Applying control inputs to move the cockpit 
inceptors  
• Solving problems and planning tasks 
ahead  
• Communicating with crew, air traffic control 
or other pilots  
• Weapons control as well as dealing with 
enemy threat. 
Many factors can influence the degree to 
which these tasks affect the overall 
workload. They may be grouped into 
categories such as: 
 
• Pilot: This includes pilot’s skills and 

experience in assessing flight situations 
as well as cognitive capacity  

• Aircraft: Its capabilities and ease of 
flying  

• Internal Environment: This includes 
atmospheric conditions, cockpit layout 
and level of system autonomy  

• Crew: The number of flight crew on 
board  

• External Environment: This includes 
meteorological conditions and other 
flight traffic  

• Task: The difficulty or complexity of the 
manoeuvre being flown. 

 
Motivation Peak pilot performance occurs at 
an intermediate level of workload, see 
Figure 1. Too low a workload level results in 
the pilot becoming complacent with the 
situation. Complacency in the cockpit is 
certainly not desirable, as it can lead to 
fundamental errors being made. On the 
opposite end of the curve, the pilot becomes 
overloaded with work, and cannot maintain 
the level of performance required for safe 
operation. Once the peak is passed, 
performance drops rapidly with increasing 
workload, which again is highly undesirable. 
During the intermediate stages, the pilot 
performance increases with workload. 
Effectively, the pilot ‘tries harder’ as the 
situation demands, and as a result actually 
performs better. The optimum operating 
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condition occurs just below the peak, thus 
allowing a small safety margin for 
unexpected events. 

 
Figure 1: Pilot Performance Shown Against 
Imposed Workload  
 
The level of workload imposed on a pilot is 
therefore an important consideration. It has 
an influence on many design and 
operational areas, this includes: 
 Safety: Optimising pilot workload means 
optimising pilot performance, thus reducing 
the likelihood of a pilot making errors. From 
the above discussion, extremes of workload 
should be avoided. 
 Crew Size: The level of workload 
anticipated in a given situation can 
determine the minimum crew size required 
on an aircraft. A lower workload environment 
allows smaller crew sizes, thus reducing 
operating costs. 
 Automation: Technological advances in 
cockpit and avionics design has significantly 
reduced the level of workload experienced 
by the pilot during flight. Some researches 
now express concern that aircraft are 
becoming over-automated, thus slipping too 
far back down the curve shown in Figure 1. 
 Operating Procedures: are scrutinised for 
their effect on pilot workload, and many are 
regularly revised to maintain an acceptable 
level. Operational limits of aircraft may also 
be set by the workload on the crew, as quite 
often in aviation the human becomes the 
weakest link in the chain. 
 Certification: In an effort to provide a safer 
working environment in flight operations, 
pilot workload is becoming an increasingly 
important design parameter. It is imperative 
that the workload levels experienced at the 
extremes of the flight envelope are within 
acceptable limits, as prescribed by flight 
regulatory authorities. As described in FAR 
25 and similar publications, satisfactory pilot 
workload is now a requirement when 
certifying aircraft for flight operations. In 

order to achieve an optimum level of 
performance in a safe environment, there is 
first a requirement to be able to measure the 
workload on the pilot. Simulation has 
emerged as a reliable and low-cost 
approach to achieving this aim. Assessing 
pilot workload using desktop software will 
reduce the dependency on costly, and 
potentially dangerous piloted evaluations. 
There is a strong motivation for developing a 
reliable and low cost method of workload 
assessment that can be implemented on 
such simulators. 

Workload Assessment  

Initial research hasled to three different 
approaches to workload assessment, that of 
analysing the direct pilot control input, a 
secondary task method looking a measuring 
the pilot mental spare capacity, and a 
physiological heart rate based assessment 
[6]. It was decided that the analysis of direct 
pilot input was more fruitful since it not only 
reflects the pilot state and control strategy 
but the simulator validity as well. A 
secondary task measurement was also 
implemented in order to assist the test pilot 
in providing a subjective workload rating 
(WR), see Figure 2.  
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Figure 2: Workload Estimation Block 
Diagram Architecture for Desktop Simulation 
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The hypothesis made in this study is that the 
measurement of pilot induced control inputs 
during flight operations contains sufficient 
information for workload to be assessed 
accurately [7]. By investigation of signal 
analysis techniques such as Fourier and 
wavelet transforms, an attempt is made to 
screen the raw data for any residual features 
that may depict a certain level of workload. 
In particular, effort is focused on frequency 
domain breakdown to collect the important 
features in the stick input signal. 
Once these features are recognised, it will 
be possible to train the neural network 
algorithm to associate them to a collected 
set of quantified workload ratings awarded 
by the pilot upon task completion. 
The neural network developed is a 
mathematical construct that consists of 
layers of nodes, and connections between 
nodes called links. It attempts to model the 
data processing ability of the human brain 
as we understand it, which consists of 
biological neurons connected by synapses. 
Each neuron in the network has an 
activation that determines its output, and 
each synapse connecting two neurons has a 
weighting that determines the importance 
paid to the connection. In conjunction with 
simple mathematical functions such as 
multiplication and summation, this model 
makes it possible to build a complex pattern 
recognition system, given the correct setting 
of the weights between neurons. There are 
several reasons for the decision to use a 
neural network to analyse the Fourier and 
wavelet data. Alternative techniques include 
examining the frequency response data by 
hand and attempting to pick out guides to 
workload, then automating this procedure; or 
using a rule induction method whereby 
important transient elements from the 
wavelet transform are analysed. Although a 
neural network algorithm is complex to 
implement, once successful, training of the 
network and analysis of new signals is 
automated and needs only minor further 
input from a human operator. The network 
has the ability to learn extremely complex 
relationships between data that is not 
obvious by human inspection, or hidden too 
deeply in the data to become apparent with 
the simple two-option structure that decision 
trees produced by rule induction rely upon. 
In addition, once trained and tested, it is 
possible to add new data (such as how a 

new pilot handles the controls) and retrain 
the network in-situ to improve the accuracy 
of the results generated. 

 
Figure 3:  Layers, connecting synapses and 
neuron biases 
 

Neural Network Approach 

The Back-Propogation Neural Network 
Figure 3 shows a simple network consisting 
of three layers, which by convention are 
labelled the input, hidden and output layer. 
The input layer neurons represent the input 
pattern that is supplied to the network when 
training or performing a calculation. The 
hidden layer neurons use the outputs from 
the input layer in conjunction with the weight 
of the connecting synapses to calculate their 
own activation, and in turn pass this onto the 
output layer through another set of weighted 
synapses. The result is a complex 
mathematical relationship between the 
activation of the output layer neurons, and 
the activation of the input layer neurons, and 
it is from this starting point that pattern 
recognition is achieved. When a network is 
first created, the synapse weightings to give 
the correct relationship between input and 
output patterns are unknown. For the 
network to be useful, there must exist some 
method of calculating these correct 
weightings. The algorithm chosen to do this 
is the ‘back-propogation method for a feed-
forward multiple layered neural network’ 
outlined in [8] and [9]. The three-stage 
procedure for training the network is: 
• Initialise the network topology and assign 
small random weights to all synapses. 
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• Present the network with a training pattern. 
This consists of an array of input values to 
be fed into the network, and an array of the 
desired target values that the network 
should generate. Calculate the network 
output by performing a forward pass through 
the network.  
• Determine the error between the actual 
network output, and the desired target 
output. Use this error to modify the 
weighting of the synapses to minimize it, 
using a gradient descent where error is 
propagated backwards through the network. 
Repeat for different training patterns until an 
overall low error state is achieved. 
 
Forward Pass Calculation The forward pass 
through the neural network is used to 
calculate the activation of the output layer 
neurons. Starting from the input layer 
neurons, the activation of each hidden layer 
neuron is calculated by summing for each 
input neuron the product of its output by the 
synapse connecting the two. A bias is then 
added (a bias can be considered a neuron 
with a constant activation of 1.0), and the 
sigmoid transfer function converts this final 
summation into a bounded output. The 
sigmoid function is continuous and non-
linear, with a definable spread; a critical 
feature to ensure that error is propagated 
backwards correctly [9]. This process is then 
repeated in a similar manner from the 
hidden to the output layer to arrive at an 
output. 
 
Backward Pass (Training) The backward 
pass is used to adjust synapse weights once 
the difference between the target output, 
and the actual output have been calculated. 
It can be thought of as calculating the 
gradient of the error surface for every output 
neuron with respect to every hidden neuron, 
and using this to determine the adjustment 
that needs to be made to minimise error.  
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Once the error associated with each neuron 
in the output layer has been calculated 

(using Equation 1), the error can be 
propagated backwards to the hidden layer 
using the synapse weightings between the 
two layers to assign ‘blame’ for the error 
(using Equation 2). Finally, after all the error 
gradients for each hidden and output neuron 
are known, the error can be minimised for 
each neuron by following the gradient using 
Equation 3: 
 

ijijij wmomentumoutEgainw ×+××=  
Equation 3 

 
A gain is used to allow the ‘step-size’ taken 
to be altered in order to avoid overshooting. 
A variable momentum term can also be 
used to store the previous gain adjustment, 
to attempt to prevent descent into local 
minima. The network is considered trained 
when the error associated with each training 
pattern is acceptably low, which for the 
purposes of this application will be 
generating a rating that agrees with the 
target rating to the nearest WR. 
 

Secondary Task Assessment  

Background Theory The concept of 
secondary task testing involves giving the 
pilot a side task to complete, separate from 
that of the flying task (or primary task). In 
general, secondary task performance 
decreases as workload on the pilot 
increases. Secondary task methods have 
been, and still are, used in the simulated 
cockpit to measure pilot workload. In almost 
all of these cases, a strong correlation was 
found between secondary task performance 
and task difficulty or pilot stress level [10]. 
Therefore, it is possible to identify the 
workload level on the pilot from their 
secondary task performance [11] [12]. 
Effect of workload on Secondary Task 
Workload can be assumed to affect the 
pilot’s secondary task performance in four 
ways:  
•The pilot can become completely immersed 
in the flying task, such that their senses are 
devoted entirely to the flight. They may filter 
out all other external stimuli, and therefore 
‘not hear’ or ‘see’ the secondary task.  
• The pilot will prioritise the tasks during the 
flight test, with the secondary task, by 
definition, being the lowest priority. Thus, 
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even though the pilot is aware of the task, 
he/she is unable to divert from the flying task 
to respond to it.  
• Once the pilot has devoted a time segment 
to the secondary task, their performance on 
the task may be impaired due to the 
pressure on them to carry out the task 
quickly, leading to mistakes.  
• In the final phase, the response must be 
entered correctly. Again, this may be 
impaired by time pressure on the pilot, 
causing them to strike the wrong key/button. 
 
Normalising the Results Repeating a test 
with a different pilot would result in a 
different workload rating, as the ability and 
technique of each pilot will be different. 
Hence, there is a requirement to log the 
pilot’s natural capacities (reaction time, 
musical perception, time perception, ball 
counting etc) to provide a baseline 
comparison, otherwise the workload rating 
given may be dependant on the mental 
arithmetic ability of the pilot. If these 
baseline conditions are factored into the 
workload calculation correctly, the result is a 
workload rating independent of the pilot, 
thus allowing comparison on a universal 
scale. 
 
Implementation It was decided that the tasks 
would be implemented using computer 
software to display and log all information. 
This eliminates the need for a human to 
perform any actions or record results during 
the test. The computer program could be 
designed to run either on an adjacent 
platform, or on the same platform as the 
flight simulator. The first is the simpler 
method to implement, but has the obvious 
disadvantage of requiring extra hardware 
and space within the ‘cockpit’ area to set up 
this equipment. This approach necessitates 
the pilot to divert their visual attention from 
the main flying displays, and in doing so 
makes a clear distinction between primary 
and secondary tasks. Care must be taken 
however to ensure that this does not cause 
a drop in performance of the flying task, or 
the workload that is being measured would 
be affected. By using a laptop computer, it 
may be possible to complete the testing in a 
real aircraft, depending on the aircraft in 
question and associated safety issues. This 
would highlight the difference between the 
simulator ratings and those in the real 

aircraft. Similarly, the testing could take 
place in different simulators. The second 
set-up is immediately made more 
complicated by the need to integrate the 
secondary task into the simulation software. 
Either the program code would have to be 
compatible with Microsoft flight Simulator 
2002 (FS2002), or a separate program 
window would be displayed on top of the 
FS2002 window. This would have to accept 
inputs without taking the window focus away 
from the flight simulator. From a technical 
viewpoint, both programs share processor 
time in addition to other system resources. If 
too complex, the secondary task program 
could affect the performance of the flight 
simulator software. The main advantage of a 
program running as part of the flight 
simulator is that the entire flight-testing 
procedure can be conducted within one 
package. The above arguments are 
extensive and demonstrate the complex 
choice between the two options. They each 
pose their own technical and practical 
difficulties, in addition to the effect on the 
workload being measured, which must also 
be taken into account. Based on the above 
discussion and the nature of the tasks, the 
decision was made to implement the mental 
arithmetic secondary task as a separate 
program run on a second computer platform. 
This allows for an extensive and self-
contained program, with the ability to store 
collected data and process it at a later stage 
without the need for FS2002 to be running. 

 
 

Testing Procedure 
 

Simulator Setup The flight simulator set up 
used for the purpose of this study is shown 
in Figure 4. The pilot sits in one of two 
Harrier ejector seats. One is equipped with 
Saitek X36 flight stick and throttle, plus 
Thrustmaster Elite rudder pedals. The other 
is equipped with a customised Cyborg 3D 
stick and custom made collective and 
pedals, which are set up in a helicopter 
configuration. The two seats are side by side 
and mounted on a plinth, with the left hand 
side seat used for fixed wing testing and the 
right hand side seat for helicopter flight.  
In front of the pilot is a monitor, which will 
display the control panel for the appropriate 
aircraft flown. The main view is projected 
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onto a white wall via a Toshiba TLP710E 
projector. 
 For the fixed wing seat, the stick is mounted 
on a hinged shaft to allow easy axis to the 
seat and to let the stick rest in the correct 
flying position. The throttle is mounted on a 
wooden upright - which is set at a 
comfortable position for use. 
 

Figure 4: Flight Simulator set-up [13] 
 
To the left of the pilot is a keyboard and 
mouse, used to control aircraft activities 
(landing gear, fuel pumps, flaps etc), and 
operate other features of the simulator. 
Using FS2002 as the driving simulation 
software, it was possible to set up a series 
tests for the pilot to perform. These 
consisted of maintaining heading/altitude 
tests, as well as slalom tests. To ensure that 
a wide range of workload is experimented by 
the pilot, the level of difficulty of these tests 
was varied by adding different turbulence 
levels during flight. Slalom tests are made 
more difficult by reducing the distance 
between the slalom posts. 
A secondary task running parallel to the 
primary flying task is set up on laptop 
independent of the main simulator system. 
The secondary task consists of simple set of 
arithmetic operations that the pilot has to 
perform. The secondary task is a measure 
of the pilot spare capacity and hence the 
level of workload experienced. The 
secondary task is merely there to assist the 
pilot in providing a subjective workload 
rating using the Bedford scale shown in 
Figure 5.  
 
 

 
Figure 5: The Bedford Scale 

 
 

Implementation 
 

After discovering there was no software that 
would record the raw input control 
deflections that the pilot produces while 
flying the aircraft the Flight Control Logger 
was developed Figure 6.The logger makes 
use of the DirectInput API released with 
DirectX 8.0, and so requires this version or 
later of the DirectX runtimes to be installed 
to operate. A sample of the logged data from 
the maintain heading and altitude test is 
shown in Figure A.1 - see appendix. 
 

 
Figure 6:  The Flight Control Logger window 
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At a 10ms sampling rate a Fourier transform 
was applied to produce a frequency 
response for each 10 second segment of a 
single test. 
Data inspection showed that above 10Hz 
the response was a constant intensity noise 
no matter what test data was presented. 
Additionally, it was reasoned that no human 
could produce control frequencies higher 
than 10Hz. Figure 7. 

 
Figure 7: Up/down slalom Low difficulty. 
Frequency Spectrum. 10 sec sample 
  
In some test segments the amplitude 
associated with certain frequencies was very 
high, creating a sharp spike in the response. 
This response needed to be normalised to 
give a range of amplitudes between 0.0 and 
1.0. A problem would arise if this data were 
to be fed into the network keeping the 
highest spike from all the tests as 1.0, since 
the rest of the signal would be drowned out. 
It was therefore decided that any spikes with 
an amplitude higher than 200 would be 
clipped to 200, preserving the importance 
and accuracy of lower intensity frequencies. 
After this clipping, the 1000 frequency 
amplitudes each for longitudinal and lateral 
were written as bytes to a binary file ready 
for import into the neural network, where 
0x00 represented an amplitude of 0, and 
0xff represented an amplitude of 200 or 
greater. 
As for the wavelet transform, the scale was 
varied logarithmically, whereas the position 
shift in time was calculated on a linear basis 
according to the desired resolution. Jones et 
al [14] suggest that for the purpose of 
Control Stick Displacement (CSD) analysis, 
the analyzing wavelet can be chosen in the 

form of a pulse. With this choice much of the 
information concerning the structure of the 
data is concentrated in the local minima and 
maxima of the correlation surface. In 
particular, the signal can be reconstructed 
as a discrete sum of pulse shaped features, 
whose position and scale are matched to 
those of the local extremes. A mother 
wavelet with the shape of a pulse was used 
for the calculation of correlation surfaces in 
this study. Upon calculation of the 
correlation surfaces for each test data, the 
local maxima and minima were located and 
translated into a binary input to the neural 
network. Figure A.2, see appendix. 
 
Using the developed software the neural 
network was configured as shown in Figure 
8. The number of input neurons was set to 
the number of bytes in the input files (1000 
each for the Fourier transform of the x and y 
stick movement). The number of output 
neurons was set to 1, giving a single output 
between 0.0 and 1.0, which will be a 
representation of the workload rating. The 
hidden layer neurons, which could number 
anywhere between 1 and 2000, were set 
from experience at 1500. If training was slow 
or failed to converge, this number could be 
decreased or increased as needed. 
 

 

Figure 8:  Initial configuration of network 
parameters 
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Results 

Network Training: The network was given 10 
second segment patterns of frequency 
spectrums for a maintain heading and 
altitude tests, with flight conditions ranging 
from none, light, moderate, to severe 
turbulence. 
The network has been able to differentiate 
between these four input signals, and hence 
different pilot control inputs, shows that the 
information needed to determine pilot 
workload is present in the data presented to 
it, see Table 1 in appendix. In other words, a 
frequency response generated from a 
Fourier transform is enough, in this case, to 
provide an indication of pilot workload, for 
the task of maintaining heading and altitude 
described. 
It was found that input patterns in the 
frequency spectrum were ideally suited for 
recognition by a neural network, since the 
underlying algorithms of the network, based 
on summation of inputs (which is analogous 
to integration) and multiplication or division 
by constant values (analogous to taking an 
average). In addition, the network has the 
capability to automatically screen out 
regions of the frequency spectrum which are 
not relevant (for example, noise, or random 
data) which is advantageous to automatic 
processing of human data for signal 
analysis. 
 
Verification With Unseen Data: To verify the 
ability of the network to obtain further 
estimation of workload it is necessary to 
input unseen data and to check the 
workload rating it produces is correct. 
This time the network is initially trained with  
5 seconds signal patterns breakdown for a 
maintain heading and altitude test. Table 2, 
see appendix. 
All workload ratings for light, moderate and 
severe turbulence are correctly estimated to 
1 WR. Yet again the network shows good 
convergence when trained. Table 3, see 
appendix. 
Because a figure is needed for pilot 
estimated workload, it is necessary to use 
data from the flight tests conducted, since 
there is no other way to generate a figure for 
workload. However, the actual data that will 
be used to test the network will not have 
been used to train it, and so it can be 

considered unseen, even though it is from 
the same flight test. 
Although there is more variation in the 
individual workload ratings generated by the 
network for this unseen data, the average at 
the end agrees closely to the pilot predicted 
workload, in each case giving the correct 
WR. This suggests that if many control stick 
samples are taken from a task and the 
results averaged over time, the neural 
network would be able to provide a good 
estimate of workload.  
The network was next set up to attempt to 
learn a workload relationship between the 
different control patterns in the up-down 
slalom tests. The four tests used were two 
up-down slaloms of different difficulties, in 
both the zero turbulence and light turbulence 
conditions seen in the maintain heading and 
altitude tests earlier. See table 4, appendix. 
In this case, the error associated with the 
light turbulence up-down slalom 1 training 
patterns were all much higher than the 
average, and gave higher workload readings 
than the test pilot indicated, however, in 
absolute terms the error is low because the 
network as a whole has converged well. 
Further analysis of the frequency spectrum 
suggested that when a turbulence element 
is added to the overall workload estimation 
process, the difference between frequency 
responses can no longer be isolated as 
being caused by either increasing difficulty 
of maneouvre, or increasing difficulty of 
aircraft handling alone. They are in some 
way coupled, as the pilot attempts to 
perform the more complex maneuvre while 
correcting for turbulence at the same time. 
This will have a tendency to associate one 
single workload value with more than one 
set of control stick frequencies. 
 
Thus, the training from these initial patterns 
has been successful with Fourier analysis, 
and the foundation of a system for 
calculating pilot workload from analysis of 
control stick data is proven. 
 
As for the wavelet analysis the maintain 
heading and altitude test was used, in which 
all four turbulence conditions were included 
in the network training programme, as 
shown in Table 5. Looking at the WR ratings 
calculated for the zero and the light 
turbulence conditions shows that the 
network is unable to distinguish between 
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these input patterns, and has hence reached 
an average value between the two, which it 
produces every time either pattern is given 
to it. In order to verify this result, it was 
decided to retrain the network with zero and 
light turbulence being assigned a WR of 3, 
and moderate and severe turbulence a WR 
of 6, and to check if the network can tell 
them apart. The results from this training run 
are shown in the Table 6. This seems to 
suggest that when presented this particular 
wavelet data, some workload information is 
being lost, and only a rough estimate of 
workload is possible. 
 
Conclusion: The signal analysis of the stick 
data has highlighted the important features 
in the signal. The neural network effectively 
learned the combinations necessary for 
specific workload ratings and achieved good 
accuracy. It was shown that for the tests 
used, the Fourier analysis was more 
accurate than the wavelet analysis. The 
neural network is only able to provide 
accurate estimations of pilot workload when 
that workload depends on a single variable. 
Coupled situations in which workload 
depends on factors such as turbulence and 
difficulty of manoeuvre at once are 
problematic to train, and yield less accurate 
results due to an interference between the 
frequencies generated from a Fourier 
transform. When trained with enough data, 
where a single variable is altered to induce 
workload changes, the neural network is 
able, in conjunction with an average taken 
over time, to provide an estimate of 
workload rating from unseen but similar data 
that is accurate to within 1 WR. 
The flight simulator used for flight testing 
was shown to be adequate for the task. No 
significant effects on workload caused by 
deficiencies in the simulator level of realism 
were observed. 

Recommendations 

Application of better redundancy methods 
and filtering techniques should improve 
considerably the selection of important 
features in the signal allowing a faster and 
more efficient training of the neural network. 
Further calibration and testing would allow 
the neural network to be better trained, thus 
increasing its accuracy. Detailed studies are 

also needed to deal with the complex input 
patterns.  
As for wavelet analysis technique used, a 
more accurate features selection can be 
performed by using redundancy techniques 
such as weighted sum of residuals and 
orthogonalisation, whereby a rigorous 
selection of local extremum in the correlation 
surface is achieved. This might enable the 
neural network to recognise and lock faster 
into a solution and identify differentiating 
patterns in input signal associated with 
different workload ratings. 
Although training a network is a time and 
data-handling intensive process, calculation 
of workload using an already trained 
network only requires a Fourier transform 
and simple forward pass. This should be 
able to be achieved faster than the time 
period over which data is collected, leading 
to the goal of a real-time workload monitor 
being achievable. 
 
Finally, the examples discussed have only 
considered the influence of primary control 
activity on workload. The techniques could 
be extended to include the effect of 
secondary compensatory inputs in other 
axes, or to cases where two or more axes of 
control have primary role. 
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APPENDIX 
 

 

 
 

 

 
Figure A.1- Sample Data logged 
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Figure A.2: Sample Surface Correlation Results for Clear Maintain Heading & Altitude Test 
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Table 1:  Excellent convergence demonstrated after extended training (maitain head/altitude) test 
 WR (none) WR (light) WR (mod) WR (severe) 
T+0s pattern 0.2907 0.5168 0.5899 0.7019 
T+10s pattern 0.3255 0.4848 0.5844 0.6985 
T+20s pattern 0.2785 0.4801 0.5799 0.7104 
Average 0.2982 

(want 0.3000) 
0.4939 
(want 0.5000) 

0.5847 
(want 0.6000) 

0.7036 
(want 0.7000) 

Error -0.0018 (<1%) -0.0061 (<1%) -0.0152 (<1%) 0.0036 (<1%) 
 
 
 
Table 2: Network training performance after 10854 training loops (maitain head/altitude) test 
 
 WR (none) WR (light) WR (mod) WR (severe) 
T+0s pattern 0.2103 0.5336 0.5601 0.6746 
T+5s pattern 0.2357 0.4830 0.5595 0.7257 
T+10s pattern 0.2844 0.4929 0.6043 0.6799 
T+15s pattern 0.2877 0.5021 0.5861 0.6788 
T+20s pattern 0.3783 0.4528 0.5870 0.6839 
T+25s pattern 0.3445 0.5317 0.5722 0.6951 
T+30s pattern 0.3087 0.5233 0.5877 0.7195 
T+35s pattern 0.3039 0.5343 0.5893 0.6795 
Average 0.2942 

(want 0.3000) 
0.5067 
(want 0.5000) 

0.5807 
(want 0.6000) 

0.6921 
(want 0.7000) 

Error -0.0058 (1.9%) 0.0067 (1.3%) -0.0193 (3.2%) -0.0078 (1.1%) 
 
 
Table 3: Unseen data workload estimation(maitain head/altitude) test
 
 WR (none) WR (light) WR (moderate) WR (severe) 
T+2s pattern 0.2265 0.4617 0.4523 0.7192 
T+7s pattern 0.2574 0.4438 0.5784 0.8860 
T+12s pattern 0.2649 0.4053 0.5647 0.8263 
T+17s pattern 0.3155 0.3898 0.6237 0.4980 
T+22s pattern 0.3905 0.5806 0.6112 0.7541 
T+27s pattern 0.4024 0.4597 0.5456 0.7660 
T+32s pattern 0.2644 0.5575 0.6050 0.7174 
T+37s pattern 0.4028 0.5380 0.5479 0.7669 
Average 0.3155 

(want 0.3000) 
0.4796 
(want 0.5000) 

0.5661 
(want 0.6000) 

0.7417 
(want 0.7000) 

 
Table 4: Final up-down slalom network status 
 
 WR (none u1) WR (none u2) WR (light u1) WR (light u2) 
T+0s pattern 0.6110 0.7895 0.8858 0.8346 
T+10s pattern 0.5927 0.8312 0.8944 0.9049 
T+20s pattern 0.5852 0.8346 0.7551 0.8484 
Average 0.5963 

(want 0.6000) 
0.8184 
(want 0.8000) 

0.8451 
(want 0.8000) 

0.8626 
(want 0.9000) 

Error -0.0037 (<1%) 0.0184 (2.3%) 0.0451 (5.6%) 0.0374 (4.1%) 
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Table 5:  Inability to discriminate between zero and light turbulence shown for wavelet analysis, 
maintain heading/altitude test 
 

 WR (none) WR (light) WR (mod) WR (severe) 
T+0s pattern 0.4737 0.4529 0.7171 0.6381 
T+10s pattern 0.4764 0.4901 0.6939 0.7033 
T+20s pattern 0.4262 0.4494 0.4606 0.5439 
Average 0.4587 

(want 0.3000) 
0.4642 
(want 0.5000) 

0.6238 
(want 0.6000) 

0.6284 
(want 0.7000) 

Error 0.1587 (53%) -0.0358 (7.1%) 0.0238 (3.9%) -0.0716 (10%) 
 
Table 6: Amended WR for wavelet analysis shows convergence 
 

 WR (none) WR (light) WR (mod) WR (severe) 
T+0s pattern 0.3300 0.3102 0.5994 0.4952 
T+10s pattern 0.3296 0.3434 0.5881 0.5806 
T+20s pattern 0.2884 0.3077 Unavailable Unavailable 
Average 0.3160 

(want 0.3000) 
0.3204 
(want 0.3000) 

0.5937 
(want 0.6000) 

0.5379 
(want 0.6000) 

Error 0.0160 (5.3%) 0.0204 (6.8%) -0.0063 (1.0%) -0.0621 (10 %) 

 

 




