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Abstract 
 
The study demonstrates that optimal multi-cyclic variations of blade root flap and lag stiffness can produce 
simultaneous reductions in all components of vibratory hub loads of a 4-bladed hingeless rotor helicopter.  Both 
gradient and non-gradient based optimization schemes are successful in reducing the hub vibrations.  The required 
stiffness variations can be reduced (without significantly compromising performance) by introducing a penalty on 
the input in the objective function used for minimization.  Reductions in the vibration performance index of over 
90% were seen with optimal 2/rev and 3/rev flap and lag stiffness variations.    The concept was effective in reducing 
vibration over a range of variations in configuration (fundamental flap, lag, and torsion frequencies) and operational 
parameters (forward speed).  Further, it was shown that stiffness variations of discrete flap and lag springs 
introduced in the blade root region are effective in reducing vibratory hub loads.  Thus, introduction of discrete 
controllable stiffness elements (devices) is a viable method for practically varying stiffness of the blade root region. 
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1.  Introduction 
 
In forward flight, helicopters can experience severe 
vibration due to the rotor blades operating in a periodic 
aerodynamic environment.  These vibrations result in 
significant crew and passenger discomfort, increased 
component fatigue and maintenance requirements, and 
reduced effectiveness of weapon systems for military 
helicopters.  Accordingly, considerable effort has been 
devoted over the past decades to examine passive 
design and active control strategies for helicopter 
vibration reduction (see for example Refs. 1-10). 
 
Common techniques for passive vibration reduction 
include use of vibration absorbers, isolators, and 
structural and aerodynamic design optimization of the 
rotor blades.  While these concepts produce some 
vibration reduction in certain flight conditions, they 
generally involve a significant weight penalty and 
constitute a fixed design (inability to adapt to changes 
in conditions). Active vibration reduction strategies 
including Higher Harmonic Control (HHC), Individual 
Blade Control (IBC), and Active Control of Structural 
Response (ACSR) have also been examined 
extensively.  HHC or IBC involves actively 
controlling the blade pitch or trailing edge flap 
deflections so as to generate unsteady higher harmonic 
aerodynamic loads that cancel the original vibration. 
Although these methods can be effective, they usually 

involve high power requirements, added weight and 
complexity, and high pitch-link loads.  Further, IBC 
requires use of slip rings capable of transferring 
enough power to the actuators in the rotating frame.  
ACSR uses actuators carefully located in the airframe 
to actively cancel the incoming N/rev vibration from 
the rotor.  While this method can locally reduce 
airframe vibration, the high vibration levels and 
dynamic stresses experienced by the rotor blades 
remain unaltered. 
 
Recently a new semi-active approach was proposed for 
helicopter vibration reduction [11], involving cyclic 
variation of the effective flap, lag, and torsion stiffness 
of the blade root region.  It was shown that by 
introducing small-to-moderate amplitude stiffness 
variations at harmonics of the rotor speed, 
considerable reduction in vibratory hub loads was 
possible [11].  A semi-active approach defers from 
purely active approaches to rotor control (HHC and 
IBC) in that large aerodynamic forces do not have to 
be overcome in every cycle (a requirement with pure 
active approaches involving twisting of the blade, 
changing of the blade pitch, or deflection of a trailing 
edge flap device).  Consequently, power requirements 
for semi-active control schemes tend to be 
significantly smaller for comparable performance; and 
such strategies have already been widely explored for 
vibration reduction applications in civil structures [12-
15] and automobile suspension [16-19].  An additional 
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advantage of semi-active control is that unlike pure 
active control, no energy is being pumped into the 
controlled system, so no potential for instability is 
introduced.  While both semi-active as well as pure 
active rotor control favorably modify the rotor blade 
response in reducing vibration, a semi-active approach 
achieves this by modulating the system properties 
whereas pure active control generates forces and 
moments on the blade.  In practice, stiffness variations 
of the blade root region could be achieved by 
introducing discrete devices such as controllable 
orifice devices [20] or controllable 
Magnetorheological (MR) fluid based devices in the 
blade root region [21, 22].  Through parametric 
studies, Ref. 11 clearly established the sensitivity of 
hub vibrations to individual cyclic stiffness variations 
and explained, in detail, the underlying physical 
mechanisms by which vibration reductions were 
achieved.  However, an optimal controller using multi-
cyclic stiffness variations, that simultaneously reduced 
all six components of vibratory hub loads, was not 
developed. 
 

2.  Focus of the Present Study 
 
In Ref. 11 it was shown that 2/rev and 3/rev flap and 
lag stiffness variations are most effective for reducing 
the 4/rev hub vibrations of a 4-bladed hingeless rotor 
helicopter.  The primary focus of the present study is 
to develop an optimal multi-cyclic controller that 
determines the amplitudes and phase values of these 
stiffness variation inputs for simultaneous 
minimization of all components of vibratory hub 
loads.  Both gradient and non-gradient based 
optimization schemes are used to minimize a quadratic 
objective function comprising of all components of 
4/rev hub vibrations, with the latter guaranteed to yield 
a global minima of the objective function.  The effect 
of introducing a penalty on the input is examined, as 
well, to limit the magnitude of the stiffness variations 
required. 
 
The effectiveness of the multi-cyclic controller is 
evaluated for variations in rotor parameters such as 
fundamental flap, lag, and torsion frequencies; as well 
as variations in operating condition (cruise speed).  In 
addition to overall stiffness variations of the root 
element of the rotor blade, effectiveness of cyclic 
variations in the stiffness of discrete flap and lag 
springs introduced in the blade root region is 
examined as well.  Although these discrete springs 
represent unspecified (generic) variable stiffness 
devices, it clearly demonstrates that such discrete 
devices would indeed be effective in reducing 
vibratory hub loads of a helicopter. 
 

3.  Analysis Method 
 
To evaluate the effectiveness of optimal cyclic 
stiffness variations for helicopter hub vibration 

reduction, a comprehensive rotorcraft aeroelastic 
analysis based on the UMARC formulation [23] is 
used.  A BO-105 type 4-bladed hingeless rotor 
helicopter is simulated, with the blades assumed to 
undergo elastic flap- and lag-bending, and elastic 
torsion deformations.  The sectional aerodynamic 
loads are calculated using blade element theory, with 
the inflow calculated using the Drees model.  In the 
analysis, the blades are spatially discretized using the 
Finite Element Method, and the discretized blade 
equations of motion are transformed to modal space to 
reduce computational cost.  Blade periodic response in 
forward flight is calculated using the temporal finite 
element method.  Evaluation of blade response and 
vehicle equilibrium (vehicle orientation and controls) 
is carried out iteratively in a coupled response-trim 
calculation procedure.  Such a coupled solution 
procedure is required since the blade response 
influences the steady hub forces and moments, which 
impact the vehicle orientation and control settings.  
These, in turn, affect the blade response.  The 
converged solution yields the vehicle orientation and 
controls, blade periodic response, as well as the 
vibratory blade root loads and hub loads. 
 
The spatial discretization of the rotor blade is shown in 
Fig. 1, and the flap and lag stiffness ( βEI  and ζEI , 

respectively) of the root element is varied cyclically as 
follows: 
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In the above equations, “n” represents the frequency of 
the stiffness variations (n=1 implies 1/rev variations in 
stiffness, n=2 implies 2/rev variations, etc); and “φn” 
represents the phase angle of the stiffness variation at 
n/rev.  The amplitudes of stiffness variations, ∆EIβ and 
∆EIζ, are expressed as percentages of their baseline 

values ( βEI  and ζEI , respectively).  Equations 1 can 
be written in a compact form as: 
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The coupled blade flap-lag-torsion equations of 
motion can then be written symbolically as, 

{ } NLFq)(KKqCqM =ψ∆+++
∗∗∗

   

or q)(KFKqqCqM NL ψ∆−=++
∗∗∗

            (3) 

 

where NLF  includes all the constant as well as 
nonlinear elastic, inertial, and aerodynamic 
contributions.  Clearly, the q)(K ψ∆  term (due to 

stiffness variation) can be regarded as an unsteady 
loading that, in essence, can be used to modify the 
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blade response as desired.  Traditional HHC or IBC is 
based on the generation of unsteady forces (of 
aerodynamic origin) at 3/rev, 4/rev, and 5/rev.  In the 
present concept, since the blade periodic response, q, 
itself contains harmonics of rotor frequency, lower 
harmonic variations of stiffness, )(K ψ∆ , would also 

be able to generate unsteady loads, q)(K ψ∆ , at 3/rev, 

4/rev, and 5/rev, for a 4-bladed rotor. 
 
To determine the optimal stiffness variation, )(K ψ∆ , 

the approach used is similar to that employed in 
previous active vibration reduction studies [24].  
Instead of the active control (blade pitch or trailing 
edge flap) inputs, it is assumed that the stiffness 
variations, K∆ , relate to the helicopter vibration 
output, z, through a transfer function, T, as follows: 
 
 zn = zo + T ∆Kn              (4) 
 
Where “zo” represents the baseline 4/rev hub vibration, 
while “zn” represents 4/rev hub vibration in the 
presence of variation in stiffness, ∆Kn.  The transfer 
function, T, is numerically calculated by perturbation 
of individual stiffness components, about the baseline 
configuration. 
 
The control algorithm, adapted from Ref. 24, is in 
general based on the minimization of a composite 
quadratic objective function, J, defined as: 
 
  J  =   Jz  +  Jk   =   zn

T Wz zn + ∆Kn
T Wk ∆Kn           (5) 

 
where “Wz” represents the weighting on output 
vibration, and “Wk” represents the penalty weighting 
on input. 
 
Gradient and non-gradient based methods are used to 
minimize J and determine the optimal input (stiffness 
variation).  In the gradient based method, an optimal 
solution can be found by substituting Eq. (4) into Eq. 
(5) and setting ∂J/∂∆Kn = 0.  The resulting optimal 
input is: 
 
 ∆Kn = -(TTWzT + Wk )

-1TTWz zo             (6) 
 
The non-gradient optimization method considered is 
based on a Genetic Algorithm (GA) approach [25].  
An optimal input is determined through an 
evolutionary process replicating natural selection.  
Any possible input is coded into a binary string called 
an individual. Each individual has a fitness that 
corresponds to its performance index. The most “fit” 
individuals produce the next generation through a 
mating and mutation process.  After several 
generations, the process will produce the individual 
with the highest fitness that represents the optimal 
solution.  For the genetic algorithm simulations 
conducted in the present study, the following 
parameters are considered - variable size of 2-8, 

number of individuals in each generation is 20; and 
number of generations is 50-200. 
 
In the optimization studies of the following sections, Jz 
(which is a measure of the vibration level) is used as a 
vibration performance index; with smaller values of Jz 
indicating more vibration reduction due to cyclic 
stiffness variation. 
 
In practice, it is anticipated that root stiffness variation 
will be achieved through discrete controllable stiffness 
devices introduced in the root region of the blade (see 
schematic sketch, Fig. 2).  These devices could be 
expected to contribute significantly to the baseline 
rotor stiffness and can be mathematically represented 
by introducing the controllable springs wK , wK ′ , vK , 

and vK ′  (as shown in Fig. 2).  However, it should be 

noted that since a single device contributes to both the 
translational and rotational flap stiffness, wK  and 

wK ′  are not independent.  Similarly, vK , and vK ′  are 

due to the same device and are again not independent.  
The ratio of the translational to rotational stiffness 
depends on the device configuration and is a known 
constant.  Cyclic variations in these spring stiffnesses 
are then represented as follows: 
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where wK , vK , wα  and vα  are known constants.  

These stiffness variations of a discrete device would 
effectively produce the overall stiffness variations of 
the blade root region required for hub vibration 
reduction.  Results provided in section 4.6 demonstrate 
that optimal variations of discrete spring stiffness do 
indeed produce hub vibration reductions. 
 

4.  Results and Discussion 
 
The effect of the optimal cyclic variations in blade root 
stiffness on hub vibration reduction is first examined 
at an advance ratio of 0.3 and a thrust level 
corresponding to CT/σ = 0.07, for a baseline 
configuration (BO-105 type 4-bladed hingeless rotor 
helicopter) whose rotor-fuselage properties are given 
in Table 1.  Without any cyclic stiffness variation, the 
predicted vibratory hub loads and blade root loads for 
the baseline configuration (at advance ratio 0.3) are 
given in Table 2.  The performance of a series of 
optimal controllers using 3/rev flap stiffness variation, 
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2-3/rev flap and 3/rev lag stiffness variations, and 2-
3/rev flap and lag stiffness variations, respectively, are 
examined in Sections 4.1 – 4.3.  Both gradient and 
non-gradient based optimization methods are used and 
the effect of introducing penalty on input controls is 
examined as well.  Sections 4.4 and 4.5, respectively, 
evaluate the effectiveness of the control scheme for 
variations in baseline configuration and cruise speed.  
Finally, Section 4.6 demonstrates the effectiveness of 
discrete controllable stiffness devices in reducing 
vibratory hub loads. 
 
4.1 Optimal 3/rev flap stiffness variation 
 
Using gradient-based optimization, the 3/rev flap 
stiffness variation is determined that minimizes an 
objective function comprising of all components of 
vibratory hub loads (with no penalty on input; J = Jz, 
Wk = 0).  The amplitude of the optimal 3/rev flap 
stiffness variation was found to be ∆EIβ

3p = 10.75% of 

the baseline flap stiffness, βEI , and the phase, φ = 
22.5°.  Fig. 3 shows contours corresponding to 
constant values of the objective function versus cosine 
and sine components of the 3/rev flap stiffness 
variations.  It is seen that the optimal solution yields a 
65% reduction in objective function, and the 
corresponding reductions in individual components of 
vibratory hub loads are shown in Fig 4.  From the 
figure it is seen that 40-60% reductions in the in-plane 
hub forces and moments, and 25-30% reductions in the 
vertical shear and hub torque are simultaneously 
achieved.  Corresponding to the optimal 3/rev flap 
stiffness variation, the harmonics of blade root loads 
are calculated and summarized in Table 3. Small 
percentage increases in Sr

4p and Mβ
4p, and larger 

percentage increases in Sz
5p and Mβ

5p are observed.  
However, it should be noted that the baseline values 
for the 5th harmonic of all components of blade root 
loads are extremely small (see Table 2b). 
 
4.2 Optimal 2,3/rev flap & 3/rev lag stiffness 
variations 
 
Next, 2/rev and 3/rev flap stiffness variation and 3/rev 
lag stiffness variation is simultaneously considered for 
vibration reduction.  Using a gradient-based 
minimization of an objective function comprising of 
the components of vibratory hub loads (J = Jz, Wk = 0), 
the optimal solution (stiffness variations) are shown in 
Table 4.  For these optimal stiffness variations, the 
performance index, Jz, is reduced by a significant 91% 
(compared to the baseline).  The reductions in 
individual components of vibratory hub loads are 
shown in Fig. 5 (55-65% reductions in Fx

4p and Fy
4p, a 

70% reduction in Fz
4p, 75-80% reductions in Mx

4p and 
My

4p, and a 90% reduction in Mz
4p are observed).  As 

expected, these reductions are significantly larger than 
those obtained using optimal 3/rev flap stiffness 
variations alone.  However a large 2/rev flap stiffness 
variation was required (Table 4). 

 
4.3 Optimal 2,3/rev flap & lag stiffness variations 
 
Vibration reductions achieved with optimal 2/rev and 
3/rev flap, and 2/rev and 3/rev lag stiffness variations 
are presented in Fig. 6.  The figure includes results 
obtained using both gradient (G) and non-gradient 
(NG) based methods to minimize an objective function 
comprising of the components of vibratory hub loads 
(J = Jz, Wk = 0); and the corresponding optimal control 
inputs are shown in Table 5.  Overall, the vibration 
reductions obtained are slightly larger than the 
corresponding reductions in the previous section 
without 2/rev lag stiffness variations (compare Fig. 5 
to the results in Fig. 6 corresponding to gradient based 
optimization; and note also that Jz is reduced from 
8.92% in Table 4 to 7.34% in Table 5).  From Table 5 
it is seen that a nongradient based optimization yields 
a different solution (different optimal stiffness 
variations) from that obtained through gradient-based 
optimization, with larger overall vibration reduction 
(evident from the lower value attained by the objective 
function or performance index, Jz).  This suggests that 
the gradient-based optimization located a local-
minimum (as opposed to the global-minimum located 
using the NG-based approach).  However, due to the 
nature of the non-gradient based optimization 
(stochastic optimization), the calculation time used is 
much longer than that of the gradient-based 
optimization.  Both gradient as well as non-gradient 
based solutions yield large 2/rev flap stiffness 
variation, and the gradient-based approach further 
requires large 2/rev lag stiffness variation. 
 
Due to large stiffness variations (2/rev variations) 
required, the objective function is extended to include 
a penalty weighting on the input controls (Wk = I).  As 
a result, the optimal stiffness variations are reduced 
significantly (Table 6), without any significant adverse 
effect on the performance (see Fig. 7).  Penalty on the 
input controls reduced the optimal ∆EIζ

2p from 31% to 
15% of the baseline lag stiffness (the vibration 
performance index was virtually unchanged). For 
many other cases similar results were obtained – 
significant reductions in required stiffness variations 
for relatively small reductions performance, due to 
introduction of penalty on control inputs (Wk = I).  For 
the optimal stiffness variations of Table 6 with penalty 
on the input controls, the changes in harmonics of 
blade root loads (compared to the baseline) are 
summarized in Table 7.  Although large percentage 
increases are seen in Mφ

4p, and most of the 5/rev 
components of blade root loads, the baseline values for 
harmonics of the blade root pitching moment, and the 
5/rev components of all root loads are very small 
(Table 2b).  
 
4.4 Influence of baseline stiffness on effectiveness of 
vibration control 
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Sections 4.1-4.3 established the effectiveness of multi-
cyclic variations in flap and lag stiffness for reduction 
of vibrations of the baseline configuration whose 
properties are given in Table 1.  The present section 
examines the effectiveness of the proposed concept for 
configuration variations.  Specifically, the rotor flap, 
lag, and torsion stiffness (and correspondingly, the 
flap, lag, and torsion frequencies) are individually 
varied, and the effectiveness of cyclic stiffness 
variations to reduce vibration are re-examined.   
 
Figure 8 shows the hub vibration index, Jz, for 
variation in fundamental flap frequency.  As the blade 

baseline flap stiffness, βEI , (and flap frequency) 
decreases, the vibration index (without cyclic stiffness 
variation) initially increases by 30% but then decreases 
once the first flap frequency is reduced below 
1.125/rev. This peak vibration coincides with the 
second natural flap frequency passing through 3/rev.  
With optimal 2/rev and 3/rev flap and lag stiffness 
variations (determined using gradient based 
optimization, with input constraint) vibration levels are 
reduced significantly over the entire range of flap 
frequency variation (vibration index, Jz, seen to be less 
than 8% in Fig. 8).  The stiffness variation (input 
effort) required does not show great sensitivity to flap 
frequency variation (as seen by the fact that Jk remains 
relatively unchanged).   
 
Figure 9 shows the hub vibration index, Jz, for 
variation in fundamental lag frequency.  As the blade 

baseline lag stiffness, ζEI , (and lag frequency) 
decreases, the vibration index (without cyclic stiffness 
variation) increases sharply when the first natural lag 
frequency is around 0.7/rev. This sharp vibration peak 
occurs due to the second natural lag frequency passing 
through 4/rev, and is exacerbated by the low damping 
in the lag mode.  With optimal 2/rev and 3/rev flap and 
lag stiffness variations, it is seen in Fig. 9 that 
vibration levels are reduced significantly over the 
entire range of lag frequency variation (even around 
the aforementioned resonance).  Furthermore, the 
stiffness variation (input effort) required does not 
show great sensitivity to lag frequency variation (Jk 
remains relatively uniform). 
 
Figure 10 indicates that variation in the blade torsion 
stiffness, GJ, (corresponding to a torsion frequency 
variation between 3/rev and 5/rev) does not produce 
any significant changes in baseline vibration index (in 
the absence of stiffness variations). With optimal 2/rev 
and 3/rev flap and lag stiffness variations, vibration 
levels are reduced by over 90%, over the entire range, 
with the stiffness variation (input effort) required, once 
again showing little sensitivity to torsion frequency 
variation (Jk  relatively uniform). 
 
4.5 Effectiveness of vibration controller at different 
forward speeds 
 

This section examines the effectiveness of cyclic 
stiffness variations for vibration reduction at different 
forward speeds.  Figure 11 shows the hub vibration 
index, Jz, over forward speeds ranging from advance 
ratio 0.25 to 0.35.  It is seen that as the advance ratio 
increases, the baseline vibrations (without cyclic 
stiffness variation) increase dramatically; with the 
index Jz increasing from 30% to 275% of the value at 
advance ratio 0.3.  However, with optimal 2/rev and 
3/rev flap and lag stiffness variations (determined 
using gradient based optimization, with input 
constraint) the vibration index, Jz, is much smaller 
(well below 20%) and shows a much milder increase 
with advance ratio.  It should be noted that in Fig. 11, 
the optimal stiffness variations are recomputed at 
different forward speeds.  The input effort index, Jk, 
shows only a mild increase with advance ratio 
suggesting that there should be no actuator saturation 
problem at higher speeds. 
 
4.6 Effect of Discrete Variable Stiffness Devices in 
Reducing Vibration 
 
This section focuses on variable stiffness springs 
(representative of discrete controllable stiffness 
devices, Fig. 2), and demonstrates their effectiveness 
in reducing helicopter hub vibrations.  It should be 
noted that the device introduced at the rotor hub would 
have both “steady” and “controllable” components of 
stiffness.  The steady component could significantly 
change the baseline rotor configuration and the 
corresponding vibration levels, stresses, handling 
qualities, etc.  For an accurate assessment of the effect 
of the cyclic stiffness variations of the device, the 
baseline configuration must be changed as little as 
possible.  Thus, in the present study, when flap springs 

wK  and wK ′  are introduced, the flap flexural stiffness 

of the root element is reduced to 70% of its baseline 
value.  Similarly, when lag springs vK , and vK ′  are 

introduced, the lag flexural stiffness of the root 
element is reduced to 60% of its baseline value.  The 
steady flap and lag spring stiffness values used in the 
simulations are given in Table 8, and these selections 
keep the rotor frequencies close to the baseline values 
(without introduction of discrete devices) as seen in 
Table 9. 
 
Initially, only a controllable flap stiffness device is 
considered, and the optimal 3/rev stiffness variation to 
minimize the vibration performance index, Jz, is 
determined using gradient-based method.  Figure 12 
shows the reductions in hub vibration for the optimal 

3/rev flap stiffness variation (amplitude p3
wK∆ = 16% 

of wK , and phase, φ = 0.8°).  Reductions of over 50% 
are observed in the in-plane vibratory hub forces and 
the vibratory yaw moment.  Smaller reductions of 10-
35% are observed in the vibratory roll and pitch 
moments, respectively.  The vibration performance 
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index, Jz, is reduced to 55% of the baseline value 
(implying a 45% reduction in the vibration index). 
 
Finally, controllable stiffness devices are introduced in 
both the flap and lag directions, and optimal 2/rev and 
3/rev stiffness variations are determined (using 
gradient-based approach) to minimize Jz.  The optimal 
stiffness variations required are given in Table 10, and 
the corresponding vibration reductions are shown in 
Fig. 13.  From the figure it is seen that approximately 
55-70% reductions in vibratory hub forces, and 70% 
reduction in vibratory roll and pitch moments are 
achieved.  A smaller reduction in vibratory yaw 
moment (under 20%) is also observed.  The vibration 
performance index, Jz, is reduced to 13% of the 
baseline value. 
 
The results in this section clearly demonstrate that 
optimal control of discrete variable stiffness devices 
would produce reductions in hub vibrations.  It is 
anticipated that cyclic variation of blade root stiffness 
would be practically accomplished through the 
introduction of such discrete controllable stiffness 
elements. 
 

5.  Concluding Remarks 
 
In the present study it is demonstrated that optimal 
multi-cyclic variation of blade root flap and lag 
stiffness can produce simultaneous reductions in all 
components of vibratory hub loads of a 4-bladed BO-
105 type hingeless rotor helicopter.  Both gradient and 
non-gradient based optimization schemes were 
successful in reducing the hub vibrations.  Further, the 
required stiffness variations could be reduced (without 
significantly compromising performance) by 
introducing a penalty on the input in the objective 
function used for minimization.  Reductions in the 
vibration performance index of over 90% were seen 
with optimal 2/rev and 3/rev flap and lag stiffness 
variations.   
 
Multi-cyclic flap and lag stiffness variations were seen 
to be effective in reducing hub vibration even when 
the fundamental rotor properties (such as fundamental 
flap, lag, and torsion frequencies) were changed.  
Similarly, the concept was effective in reducing 
vibration at various forward speeds, without 
significant change in the required stiffness variation 
inputs.   
 
The paper also demonstrates that cyclic variations in 
the stiffness of discrete flap and lag springs 
introduced in the blade root region are effective in 
reducing vibratory hub loads.  Cyclic variation of 
properties of discrete controllable devices effectively 
varies the stiffness of the blade root region, and this 
constitutes a viable method for practical 
implementation. 
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Figure 1: Discretized rotor blade 

 
 

(a) 

                 (b) 

                    (c) 
 

Figure 2: (a) Sketches of discrete controllable stiffness 
elements and their mathematical idealization in  

(b) lead-lag and (c) flap direction. 
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Figure 3: Contour plot of performance index, J,        
(% Baseline) due to 3/rev flap stiffness variations 
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Figure 4: Hub vibration reduction due to optimal 3/rev 
flap stiffness variation 
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Figure 5: Hub vibration reduction due to optimal 

2,3/rev flap and 3/rev lag stiffness variations 
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Figure 6: Hub vibration reduction due to optimal 
2,3/rev flap and lag stiffness variations with gradient 

based (G) and non-gradient based (NG) approach 
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Figure 7: Hub vibration reduction due to optimal 
2,3/rev flap and lag stiffness variations with (Wk = I) 

and without (Wk = 0) input constraint 
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Figure 8: Effectiveness of optimal 2,3/rev flap and lag 
stiffness variations for different values of steady flap 

stiffness of the blade 
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Figure 9: Effectiveness of optimal 2,3/rev flap and lag 
stiffness variations for different values of steady lag 

stiffness of the blade 
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Figure 10: Effectiveness of optimal 2,3/rev flap and 
lag stiffness variations for different values of torsion 

stiffness of the blade 
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Figure 11: Effectiveness of optimal 2,3/rev flap and 
lag stiffness variations for different advance ratios 
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Figure 12: Hub vibration reduction due to optimal 
3/rev stiffness variation of discrete flap springs 
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Figure 13: Hub vibration reduction due to optimal 
2,3/rev stiffness variations of discrete flap and lag 

springs 
 
 

Number of blades 4 

Lock number, γ 6.34 

Solidity ratio,σ 0.1 

Rotational speed, Ω (Rad./s) 
40.1234 

rad/s 

Main 
Rotor 

Properties 

CT /σ 0.07 

Blade radius, R 16.2 ft. 

Blade chord, c/R 0.08 

Mass per unit length, mo 0.135 slug/ft 

Flap bending stiffness EIβ  /moΩ2R4 0.008345 

Lag bending stiffness EIζ  /moΩ2R4 0.023198 

Torsional stiffness GJ/moΩ2R4 0.003822 

Lift curve slope, a 5.73 

Skin friction drag coefficient, Cd0 0.0095 

Induced drag coefficient, Cd2 0.2 

Rotor 
Blade 

Properties 

Pitching moment coefficient, Cm 0.0 

Number of blades, Ntr 4 

Tail rotor radius, Rtr 3.24 ft. 

Solidity ratio, σtr 0.15 

Rotor speed, Ωtr 5Ω 

Lift curve slope, atr 6.0 

Tail 
Rotor 

Properties 

Tail rotor location, (xtr/R, ztr/R) (1.2, 0.2) 

Horizontal tail area, Sht/πR2 0.011 

Horizontal tail lift curve slope, aht 6.0 
Horizontal 

Tail 
Properties Horizontal tail location, xht/R 0.95 

C.G. location, (xcg, ycg) (0, 0) 

Hub location, h/R 0.2 
Fuselage 

Properties 
Net weight, W 5800 Lbs. 

 
Table-1: Rotor and fuselage properties 

 

 
 

Hub Loads  
Baseline Values 

(Non-dimensional*) 

Fx
4p 0.010937 

Fy
4p 0.010910 

Fz
4p 0.007258 

Mx
4p 0.083085 

My
4p 0.086632 

Mz
4p 0.065129 

*Non-dimensional factors are Fz
0 (5940 lbs.) for all hub forces and 

 Mz
0 (5244.5 ft-lbs.) for all hub moments 

Table-2a: 4/rev vibratory hub loads for  
baseline rotor (no stiffness variation), µ = 0.3 

 

Baseline Values (Non-dimensional*) Blade 
Root 
Loads 1/rev 2/rev 3/rev 4/rev 5/rev 

Sr 0.085114 0.008036 0.003606 0.001891 0.000092 

Sx 0.072238 0.003599 0.001990 0.004815 0.000240 

Sz 0.053513 0.039237 0.015058 0.001815 0.000483 

Mφ 0.012710 0.004204 0.000335 0.000176 0.000029 

Mβ 0.192777 0.124387 0.042688 0.004195 0.001321 

Mζ 0.384243 0.018488 0.004317 0.016282 0.000898 

*Non-dimensional factors are Fz
0 for all forces and Mz

0 for all moments 

Table-2b: Harmonics of blade root loads for baseline 
rotor (no stiffness variation), µ = 0.3 

 

 1p 2p 3p 4p 5p 

Sr -0.03 -3.35 -19.73 24.45 -38.55 
Sx -0.12 -2.13 -62.01 -17.08 -33.41 
Sz 0.70 -1.94 -61.32 -30.92 59.58 

Mφ 0.09 -1.20 -12.75 -27.71 -14.74 

Mβ -0.02 -3.83 -50.76 11.19 231.91 

Mζ  -0.11 4.72 -55.01 -26.62 -3.01 
 

Table 3: Percentage change in harmonic of blade root 
loads due to optimal 3/rev flap stiffness variation 

 
 

2/rev 3/rev 
Jz Input 

Amp Phase Amp Phase 

∆EIβ 23 -111° 15 31° 
8.92 

∆EIζ  -- -- 8 42° 

 
Table 4: Performance index and optimal 2,3/rev flap 

and 3/rev lag stiffness variations 
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2/rev 3/rev  

Jz Input 
Amp Phase Amp Phase 

∆EIβ 22 -102° 14 48° 
G 7.34 ∆EIζ  31 45° 8 47° 

∆EIβ  23 -125° 14 27° 
NG 3.55 

∆EIζ  9 66° 7 41° 
 

Table 5: Performance index and optimal 2,3/rev flap 
and lag stiffness variations for gradient based (G) and 

non-gradient based (NG) optimization 
 
 

2/rev 3/rev 
Wk Input 

Amp Phase Amp Phase 
∆EIβ  22 -102° 14 48° 

0 
∆EIζ  31 45° 8 47° 
∆EIβ 18 -108° 13 37° 

I 
∆EIζ  15 59° 6 44° 

 
Table 6: Optimal 2,3/rev flap and lag stiffness 

variations with (Wk = I) and without (Wk = 0) input 
constraint 

 
 

 1p 2p 3p 4p 5p 

Sr 1.62 -11.57 -34.60 -65.57 160.51 
Sx 2.04 0.77 -22.39 -86.37 194.45 
Sz 1.75 5.60 -26.26 -60.63 77.53 

Mφ 0.58 -2.06 -50.34 112.65 66.93 

Mβ -0.28 43.44 -83.15 25.06 167.71 

Mζ  2.12 -18.61 40.85 -76.33 254.16 
 

Table 7: Percentage change in harmonic of blade root 
loads due to the optimal 2,3/rev flap and lag stiffness 

variations (Wk = I) 
 
 

wK  0.2 βEI /R3 

wK ′  0.2 βEI /R 

vK  0.1 ζEI /R3 

vK ′  0.1 ζEI /R 

 
Table 8: Equivalent flap and lag spring stiffness of 

discrete stiffness device 
 
 
 
 
 
 
 

 
 

Mode 
Baseline 

(/rev) 
With discrete 
devices (/rev)  

1st  1.147 1.199 
2nd  3.405 3.593 Flap 
3rd  7.508 7.825 
1st  0.75 0.802 
2nd  4.372 4.503 Lag 
3rd  11.073 11.174 
1st  4.59 4.59 

Torsion 
2nd  13.601 13.601 

 
Table 9: Comparison of rotor natural frequencies for 

rotor systems with and without discrete stiffness 
devices 

 
 

2/rev 3/rev 
Jz  Input 

Amp Phase Amp Phase 
∆Kw  21 -102.5° 21 35.2° 

13.1 
∆Kv 9 107.0° 4 16.5° 

 
Table 10: Performance index and optimal 2,3/rev 
stiffness variations of discrete flap and lag springs 
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