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ABSTRACT 

The present work outlines a short review of available references and technical papers on the flight dynamics of a helicopter 
carrying a suspended load. A simplified but comprehensive model for helicopter and external suspended load,  based on the 
linear superposition of effects, is defined. This model is then used to evaluate the impact of helicopter configuration 
(articulated rotors with different state-space representations) and slung load model (pendulum or 6-DOFs suspended body, 
both spherical and streamlined) on overall system dynamic stability. Impact of load parameters (drag area, mass, length and 
elastic properties of the suspension line) on the stability of helicopter modal response is also evaluated. Finally the effect of 
helicopter attitude/rate and suspended load force feedback on the stabilization of the in-flight release phase of the payload is 
verified.

NOTATION 
a Acceleration 
A Cable cross section 
CD Drag coefficient 
CL  Lift coefficient 
CM Pitching moment coefficient 
CN Yawing moment coefficient  
CS  Sideforce coefficient 
D Drag forces vector 
E Young modulus of the cable 
f Residual 
F Force vector 
g Gravity acceleration 
i, j, k Unit vectors along x, y, z axes 
Jx, Jy, Jz, Jxz Moments of inertia 
KG Gravity forces vector 
l Load length 
L Nominal cable length  
M, N Moments w.r.t. y,z axes 
m  Mass 
p, q, r Angular speed w.r.t. x,y,z axes 
r Radius 
R Position vector 
S Reference area 
u, v, w Velocity components along x, y, z axes 
V Velocity vector 
X, Y, Z Forces along x, y, z axes 
[A] State space helicopter matrix  
[LBE] Rotation matrix from body to inertial axes 

[X] States vector 
ΔL Elongation vector (cable) 
α Angle of attack 
β Angle of sideslip 
δ Command input 
Ω Angular velocities vector 
φ, θ, ψ Euler angles 
ρ  Air density 
ζ  Damping ratio 

Superscripts and Subscripts 

˙ First derivative 
¨ Second derivative 
[ ]T Transposed vector/matrix operator 
[ ]-1 Inverse matrix operator 
A Aerodynamic 
B  Body frame 
C Cable 
crit Critical 
CG Centre of mass 
E Ground fixed inertial frame 
el Elastic 
eff Effective 
F Fuselage 
H Helicopter 
L Load 
LS Suspension point ( load) 
ref Reference 
x, y, z x, y, z axes 
ζ Damping 
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INTRODUCTION 

Carrying external suspended loads is a typical helicopter 
mission. Both military and commercial operators widely 
exploits the capabilities of helicopters to rapidly move 
heavy and bulky loads in impervious locations. Logging, 
construction, fire fighting, search and rescue, tactical 
transportation are only some of the possible missions in 
which a helicopter carries a suspended load. Unfortunately, 
suspend load adds its aerodynamics, rigid body dynamics 
and elastic suspension dynamics to that of the bare airframe 
helicopter. Less than satisfactory handling can result from 
the combined systems and flight envelope can be 
significantly degraded with great concern on safety of 
operations. In fact external suspended load operations 
account for more than 10% of helicopter accidents, often 
with severe consequences [1]. A careful study of helicopter 
dynamics and the assessment of flight and handling qualities 
is therefore vital for safe operations. 

Helicopter dynamics with external suspended load has been 
widely investigated since the extensive helicopter use in the 
Vietnam war in the ’60s and ’70s. Early studies focused 
mainly on hover or low speed flight dealing with reduced 
order helicopter models, modelling the slung load as a 
pendulum and neglecting aerodynamics effects [2]. Results 
showed a stable pendulum mode, but, in some combination 
of load weight and cable length, helicopter instability could 
arise. Further works investigated the precision hover with 
slung load and verified that conventional stability 
augmentation systems were not up to the task, thus different 
possible stabilization techniques were studied. Better results 
were obtained by feeding back to the cyclic the relative 
motion of load and helicopter [3]. A theoretically good 
alternative stabilisation scheme required the active 
displacement of the suspension point, but practical 
implementation was not explored [4]. Beside electronic 
stabilisation, appropriate piloting techniques were, also, 
investigated for various manoeuvres [5]. More recent studies 
address stability with more complex models. Ref. [6] 
develops a stability analysis based on a state space 
helicopter model decoupled in longitudinal and lateral-
directional planes. The load is modelled as a pendulum 
affected by isotropic drag and suspended by an inelastic 
cable. Results showed stability dependency on both cable 
length and load weight with the possibility of mildly 
unstable modes at the increasing of weight and cable length. 
In Ref. [7] full nonlinear rigid body equations for helicopter 
dynamics and rotor flap dynamics were derived and then 
linearised for stability study. Cable length, position of the 
suspension point with respect to the helicopter centre of 
mass and load weight all affected stability. Depending on 
the combination of parameters some modes could 
experience weak  instability. 

Most of the previously described studies neglected the 
aerodynamics of the load because they were focused on 
hover or low speed flight. Slung loads usually are bluff 

bodies and may experience instability due to unsteady flows. 
Studies conducted on containers and cylindrically shaped 
loads in forward flight showed that increasing cable length, 
load weight and speed improved stability [8]. These results 
were only partially confirmed by other works which pointed 
out that longer cables were destabilizing, but discrepancies 
can be an effect of the different aerodynamics of the load 
[9]. Despite most works try to address specific cases, it is 
generally possible to say that high drag proves to be 
destabilizing and lateral-directional motions are more 
affected by load dynamics than longitudinal ones. This is 
confirmed in Ref. [10] where extensive flight test and 
frequency response obtained by system identification show 
that increasing load weight reduces lateral bandwidth, while 
the longitudinal one is less affected. Ref. [11] analyses 
helicopter dynamics with suspended load in forward and 
turning flight. The proposed helicopter model is fully non 
linear, includes single blades flapping/lagging and rotor 
inflow and has been validated with flight test data [12]. The 
load is modelled as a pendulum affected by isotropic drag 
and suspended by an inelastic cable. Results show that 
pendulum modes can easily couple with helicopter Dutch 
roll leading to a degradation of flying qualities while effects 
on longitudinal motions are much less relevant. Unsteady 
aerodynamic behaviour of specific loads, in particular 
containers, has been widely investigated with simulation, 
wind tunnel testing and flight test [13][14]. It is known that 
external load instability can reduce safe flight envelope well 
below limits due to power loading. Ref. [15] provides means 
to passively stabilise a container, effectively restoring useful 
flight envelope up to power limits. 

Many studies focused on external load modelling. In 
particular Ref. [16] describes in detail a formulation valid 
for arbitrary number of loads, suspensions lines and even 
helicopters. Ref. [17] proposes an interesting formulation to 
describe a generic slung load system taking into account 
different suspensions combination and cable collapse and 
tightening. 

Helicopter handling qualities are widely addressed in Ref. 
[18]. Ref. [19] proposes qualitative and quantitative 
handling qualities criteria that specifically apply to 
suspended load operations. In particular, degraded visual 
environment operations with loads up to 1/3 of the 
helicopter mass are investigated, because, due to experience, 
they are considered the most demanding conditions. The 
quantitative criterion prescribes a lower limit in the 
available longitudinal and lateral-directional bandwidths. If 
the bandwidth is superior to the limit, and the helicopter 
without external load has Level 1 rating on the Cooper 
Harper scale in the performed manoeuvre, Level 1 rating is 
assured also with the external load. Below the bandwidth 
limit, Level 2 rating is still possible if the original helicopter 
has Level 1 rating. The authors recognise that it is not 
possible to ascribe a Level 3 rating due to the effects of the 
external load alone. 
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 sin cos sin sin sinL L L H L L H L HR L i L j L kθ ϕ θ ϕ θ= − + +  (4) 

The position of the suspension point HR  with respect to the 
centre of gravity of the helicopter is: 

 H H H H H H HR x i y j z k= + +  (5)                        

The absolute velocity LV  of the load is: 

 L CG R RV V + + Ω ×=  (6) 

where H LR R R= +  is the position vector of the load with 
respect to the centre of mass of the helicopter and 

B B Bpi qj rkΩ = + + is its angular velocity. The absolute 

acceleration of the load is: 

 ( )2L CG R R R Ra a + + Ω × + Ω × + Ω Ω×= ×  (7) 

where CGa  is the acceleration of the centre of mass of the 

helicopter. The weight vector is defined as: 

( )sin sin cos cos cosG F H F F H F F HF mg i j kϕ ϕ θ ϕ ϕ= − + +  (8) 

where Fϕ and Fθ are the roll and pitch attitudes of the 

helicopter fuselage. The aerodynamic drag is given by: 

 1
2L DD V VC Sρ=  (9) 

where CD is the drag coefficient of a sphere ( 0.5DC = ) and 
S is the sphere cross section. 

By enforcing moment equilibrium about the suspension 
point a system of  three second order differential equation in 

Lθ  and Lϕ  is obtained (here in matrix form): 

 ( ) 0L L G LR ma F D×− − + + =  (10) 

Any two of these equations is sufficient to compute the 
solution. The force and the moment applied by the load to 
the helicopter are: 

 H L G L

H H H

F ma F D

M R F

= − + +

= ×
 (11) 

As a remark the differential equations for the pendulum type 
external load are singular when the cable is aligned to 
helicopter vertical. This slung load model is in some way 
limited considering that the elasticity of the cable is 
neglected. This last point prevents the investigation of the 
vertical bounce phenomenon particularly significant for 
light helicopters. This limitations are overcome by the 
following 6-DOFs rigid body model. 

External load as a rigid body  

The second approach treats the external load as a rigid body. 
Nine full non linear equations evaluates linear velocities,  
angular rates and attitude angles. Three additional equations 
account for the load centre of mass position in a reference 

frame. Twelve first order non linear differential equations 
fully describe the load behaviour. The cable is modelled as 
elastic but without mass and no aerodynamic effects. A 
small damping is added. 

The six non linear first order differential equations 
describing rigid body motion are the following: 

 

sin( )
sin( ) cos( )
cos( ) cos( )

( )
( )
( )

L L L L L L L L

L L L L L L L L L

L L L L L L L L L

L L L L L L L L

L L L L L L L L

L L L L L L L L

u X m v r w q g
v Y m w p u r g
w Z m u q v p g
p L Jx q r Jz Jy Jx
q M Jy p r Jx Jz Jy
r N Jz p q Jy Jx Jz

θ
φ θ

φ θ

= + − −⎧
⎪ = + − +⎪
⎪ = + − +⎪
⎨ = − −⎪
⎪ = − −
⎪

= − −⎪⎩

 (12) 

The system is derived for the case in which principal 
moments of inertia of the load are known. Three cinematic 
equations are added to account for the attitude angles: 

 

sin( ) tan( )  cos( ) tan( )

cos( ) sin( )
sin( ) cos( )   cos( ) cos( )

L L L L L L L L

L L L L L

L L L L L L L

p q r

q r
q r

φ φ θ φ θ

θ φ φ
ψ φ θ φ θ

⎧ = + +
⎪⎪ = −⎨
⎪ = +⎪⎩

 (13) 

Finally three further equations account for load centre of 
mass position in an inertial frame. These are, in matrix form: 

 [ ] [ ] [ ], , , ,T T

LE LE LE LE BE LB LB LBL
V x y z L u v w⎡ ⎤= = ⎣ ⎦  (14) 

In the previous system of equations, XL,YL,ZL are the total 
forces and LL, ML, NL the total moments acting on the load. 
Defined as vectors: 

 
L A C

L A LS C

X F F

M M R F

= +

= + ×
 (15) 

Where AF  and CF  are respectively the total aerodynamic 

forces and the cable forces along each axes, AM are the 

aerodynamics moments and LSR is the position of the 
suspension point on the load with respect to the load centre 
of mass defined as: 

 LS LS L LS L LS LR x i y j z k= + +  (16) 

The elastic force along the cable FCel is obtained as follows: 

 Cel

LF EA
L

Δ
= −  (17) 

where E is the elastic modulus of the material, A is the cross 
section, L is the nominal length of the cable and LΔ  is its 
elongation. Elongation is obtained by differencing the cable 

effective length effL  and the nominal cable length L : 

 effL L LΔ = −  (18) 
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where effL is the difference of the position vector of the 

suspension point XHE and the position vector of the load 
centre of mass XLE expressed in an inertial frame: 

 eff HE LEL X X= −  (19) 

The force due to the cable damping is obtained in a similar 
way: 
 CF L

ζ
ζ= Δ  (20) 

where LΔ is the difference of the velocity vector of the 

suspension point HEV and the velocity vector of the load 

centre of mass LEV  expressed in an inertial frame: 

 HE LEL V VΔ = −  (21) 

and ζ is the damping ratio of the cable defined as: 

 2 L

crit

m EA
L

ζζ
ζ

=  (22) 

where critζ ζ is the ratio of the damping over the critical 

damping ( =0.02critζ ζ )  and mL is the load mass. 

A cable applies a force only if stretched. If the instantaneous 
cable length is below the nominal length the cable doesn’t 
apply any force on the helicopter, thus the total forces and 
moments applied by the load to the helicopter are: 

 

 
0

0
0

0

H C Cel

H H H

H

H

F F F
L

M R F

F
L

M

ζ
⎧ = +⎪Δ > → ⎨

= ×⎪⎩
⎧ =⎪Δ ≤ → ⎨

=⎪⎩

 (23) 

The great advantage of rigid body formulation is that it 
allows to take into account aerodynamic effects and inertial 
properties of the load. The main disadvantage is the 
increased dimension of the system of differential equations 
needed to describe the system. 

Spherical load 

For comparison purposes the first load studied is modelled 
as a sphere. As in the previous case only isotropic drag 
applies to the load. Inertial properties of the body are: 

 22
5X Y ZL L L LL

J J m rJ= = =  (24) 

where rL is the radius of the sphere. As in the previous case 
aerodynamic forces and moments reduce to: 

 
1
2

0

A L D

A

F D V VC S

M

ρ= =

=
 (25) 

Finned body 

The second type of load studied is a streamlined finned body 
with cruciform tail surfaces. To determine inertial properties 

the body is considered an ellipsoid with principal semi-axes 
with the following properties: 

 L

L

r b c
b c a

l a
= =

= <
=

 (26) 

where a, b, c are respectively the principal semi-axes along 
x, y, z. Hence, considering uniform density, the inertial 
properties of the body are: 

 
( )

2

2 2
z

2
5

1
5

x L L

y L L L

J m r

J J m l r

=

= = +
 (27) 

where rL, lL and mL are respectively the maximum radius, the 
length and the mass of the body. 

Aerodynamic forces acting on the body are: 

 
( )

2

2 2

0

2

2

1
2
1
2
1
2

L D

D D L S

L L L L

S L

L S

D V SC
C C k C C

L V SC C C

C C
S V SC

α

α

ρ

ρ α

β
ρ

=
= + +

= =

=
=

 (28) 

where due α is the angle of attack, β is the angle of sideslip 
and 2

LS rπ=  is the body cross section. Aerodynamic 
symmetry is assumed. 

Aerodynamic moments are: 

 
2

2

1
2
1
2

L M
M L A

N S A
L N

M V SC C C x
C C xN V SC

ρ

ρ

= =
=

=
 (29) 

where xA is the distance between the centre of mass of the 
body and its aerodynamic centre. Due to the axial symmetry 
no rolling moment is considered. 

Stability Augmentation System (SAS) 

Helicopters usually show a mildly unstable response, thus, 
SAS is often fitted to enhance stability and controllability. 
Two different implementations are applied to the present 
model in order to investigate their performance during the 
release phase of an external load (drop test). 

SAS 1 

The first system considered is a conventional SAS in which 
the longitudinal attitude angle θ and the relative angular rate 
q are used as a feedback to the longitudinal cyclic, while the 
roll angle φ and the roll angular rate p for the lateral cyclic. 
The controls are: 

 
( )

( )
ref qlon

ref plat

K K q

K K p
θ

φ

δ θ θ

δ φ φ

= − +

= − +
 (30) 

SAS 2 

The second SAS is similar to the first one but a further loop 
is closed by feeding back the variation of the vertical force 
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(load cell measurement at the suspension point) to the 
collective pitch. Changing the collective pitch leads to a 
change in the torque applied by the rotor to the fuselage, 
with a consequent yawing motion. To avoid that, mixing 
with the pedal input is provided. The complete control 
vector is: 

 

0

0

( )
( )

( )

w ref w

ref qlon

ref plat

ped

K w w K w
K K q

K K p
θ

φ

δ

δ θ θ

δ φ φ

δ δ

= − +

= − +

= − +

=

 (31) 

where: 

 
0

t
H

H

H

H

Zw
m

Z
w

m

Δ
=

Δ
=

∫
 (32) 

where w is the climb rate induced by the release of the 
external load, w  is the vertical acceleration and ZH is the 
vertical force applied by the load to the suspension point. 

SOLUTION TECHNIQUE 
To account for load effects, helicopter equations have to be 
modified. In particular the differences between the 
equilibrium forces and moments and the actual forces and 
moments applied to the helicopter by the suspended load 
must be added to the vehicle dynamics. The first six 
helicopter equation are modified as follows: 

 

9 9

1, 4,
1 1

9 9

2, 5,
1 1

99

6,3,
11

H
i i i iH

i iH

H
i i H i i

i iH

H
i ii i H

iiH

Xu A x p L A x
m
Y

v A x q M A x
m

Z r N A xw A x
m

= =

= =

==

⎧ Δ ⎧
′= + = +⎪ ⎪

⎪ ⎪
⎪ ⎪Δ⎪ ⎪= + = Δ +⎨ ⎨
⎪ ⎪
⎪ ⎪Δ ′= +⎪ ⎪= +

⎪⎪ ⎩⎩

∑ ∑

∑ ∑

∑∑

 (33) 

where: 

 2 2

1 1

xz xzH H
H H H H

x zH H

H H
xz xzH H

x z x zH H H H

J J
L N N L

J J
L N

J J
J J J J

Δ + Δ Δ + Δ
′ ′= =

− −
(34) 

Where ,
H H

L MΔ Δ and
H

NΔ are already normalised with 

their respective moments of inertia ,
H Hx yJ J and .

HzJ  
It is 

now possible to linearise the full system of differential 
equations composed by 9+3 helicopter equations and, 
depending on the chosen model, the 4/9+3 suspended load 
equations. Linearization is performed through the residues 
method. Starting from a trimmed condition, the states, the 
controls and the derivative vector are iteratively perturbed. It 
is then possible to reconstruct a linear system of differential 
equations in the following form: 

 [ ]{ } [ ]{ } [ ]{ }1 1 0E dx A dx B du+ + =  (35) 

where [E], [A1] and [B1] matrices are built as follows: 

 [ ]

11 01 1 01

1

1 0 0

n

n n nn n

f f f f
x x

A
f f f f

x x

− −⎡ ⎤
⎢ ⎥Δ Δ⎢ ⎥

= ⎢ ⎥
⎢ ⎥− −⎢ ⎥

Δ Δ⎣ ⎦

 (36) 

where: 

 ( , , )f f x x u=  (37) 

is the residual of the single differential equation. The impact 
of the increment Δx in the range 10-4 ÷ 10-1 was found to be 
negligible in present model formulation. Hence, it is 
possible to derive a state space system: 

 
{ } [ ] [ ]{ } [ ] [ ]{ }
{ } [ ]{ } [ ]{ }

1 1

1 1dx E A dx E B du

dx A dx B du

− −
= − −

= +
 (38) 

The resulting formulation is used to assess the dynamic 
stability of the system by modal response analysis. 

The non linearised equations are used to evaluate short term 
time response. In particular helicopter dynamics after 
impulsive load separation is assessed. 

RESULTS 
The nominal characteristics for the reference helicopters are 

given in Tab. 2. For the present analysis 0H LSR R= = . 

 Helicopter 1 Helicopter 2 
mTOT = mH + mL [kg] 6791 15876 

mL [kg] 1360 3175 
mL/mTOT [%] 20 20 

L [m] 5 5 
CDS [m2] 0.5 0.5 

Tab. 2 – Helicopter reference conditions  

Two types of analysis are performed: I) a preliminary 
assessment of dynamic stability of the coupled system in 
forward flight and II) an example of time domain response 
to perturbation for different levels of stability augmentation. 
All the stability plots (real and imaginary parts of the 
eigenvalues) assume that the total weight mTOT is constant 
i.e. the weight of the slung load is subtracted to the bare 
airframe nominal weight (with the exception of Fig. 8). The 
stability matrix [A] and the control matrix [B] are multiplied 
by a scaling factor ( ) /  TOT TOT Lm m m− in order to correct the 

sensitivity of the system as a consequence of helicopter 
mass reduction. The plots include the boundaries for pitch 
and roll oscillations as addressed by Ref. [18]. These 
requirements apply only to the helicopter poles, and not to 
the load poles. 
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the coupling of the two subsystems. Comparisons for 
different mass increases show that a direct increase of 
helicopter fuselage weight is not equivalent to suspending 
an additional mass underneath the vehicle. 

Cable damping is apparently providing a source of 
additional dynamic stability to the coupled system. The 
comparison, between the pendulum type model and the 
6DOFs type model for the slung load, points out the 
limitations of the first approach, in some way over 
simplifying the natural dynamics of the suspended rigid 
body. 

Short term time domain responses, with different levels of 
helicopter stability augmentation, show that the proposed 
model, at least in its most complete formulation, is adequate 
to represent the impact of control design parameters on the 
response of the system. As a final comment, it is 
demonstrated that the 6DOFs type model for the suspended 
load may account for inertial and aerodynamics complexity 
of the slung load with very limited computational workload.  

Reported pilot experience validates, at least partially, the 
results obtained. In fact aerodynamic effects and cable 
length are known to have little effect on the dynamic 
behaviour of helicopter with suspended loads similar to 
those here considered (heavy weight, small CDS). On the 
contrary helicopter dynamics in case of low density loads is 
much more influenced by aerodynamics and cable length. In 
particular short cables expose the load to the main rotor 
downwash. The implementation of the main rotor 
downwash in the present model would help to extend its 
validity to a wider range of external suspended loads. In any 
case validation with flight test data would be advisable for 
future developments of this research activity. 
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