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Abstract 
Rotorcraft platforms are becoming 

increasingly dependent upon electronic systems 
controlled by software to meet functionality 
requirements. This is further driven by 
requirements to reduce platform weight and 
complexity by replacing hydraulic and 
mechanical systems, where possible, with 
electronics. The result is that avionics can now 
account for over 40% of the through-life costs of 
rotorcraft platforms. The requirement to support 
increasingly demanding application functions is 
such that this figure, in both absolute terms and 
as a percentage of the total system cost, is set to 
increase for new platforms and upgrades to 
existing systems. If these costs are to be 
contained avionic systems will become 
increasingly dependent upon COTS 
(Commercial Off The Shelf) components for 
both hardware and software. Although these 
products may appear to meet real-time 
performance requirements individually their 
integration and certification in aircraft systems 
requires rigorous proof of correctness. The 
problem of certification of systems with COTS 
components is exacerbated by the rate at which 
new versions of the products are released, which 
may not be compatible with other system 
components. The UK Ministry of Defence 
(MOD) has therefore funded research into the 
integration of COTS components into advanced 
avionic systems.  

While the use of commercially available 
hardware components has, to some extent, been 
accepted as the only way forward, the use of 
COTS software components has been highly 
contentious. Although the potential benefits can 
still apply to software, new challenges are 
introduced that must be overcome. Although 
software does not fail in the same way as 
hardware, the effect on system behaviour can be 

just as serious, and the resulting costs even 
higher. These problems are exacerbated by the 
inherently integrated nature of advanced 
avionics. A key area of concern for integrating 
commercially available software products into 
high integrity systems is proving that the 
software will be both safe and reliable. These 
areas have been tackled differently and the 
results so far are summarised in this paper.  

The very idea of trusting COTS software in 
a complex real-time system that may affect, or 
even be responsible for, safety critical or mission 
critical functions has been the subject of much 
debate. The concerns have mainly been centred 
on dependability and safety certification. 
Although an avionic system will include a large 
number of software components of different 
types, a particular problem was identified with 
operating system certification. It is felt that this 
will have the greatest impact on affordability and 
flexibility, and presents the greatest challenge 
for certification and re-certification of the 
platform. This is not only a very complex 
component, but also one that has commercial 
support from a range of vendors. The operating 
system is also a component likely to require 
upgrading as hardware resources are themselves 
upgraded to take advantage of commercial 
developments. 

Until a few years ago it seemed unlikely 
that it would be possible to meet UK military 
certification requirements for a platform using a 
COTS component as complicated as an 
operating system for mission or safety critical 
functions. Even if it was possible, it seemed that 
the costs involved would be prohibitive and the 
traditional approach of developing bespoke, ie 
non-COTS, solutions would be more cost 
effective. This has been a major stumbling block 
in their acceptance and has often led to bespoke 
solutions. Since that time, however, operating 
system vendors have taken this problem 
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seriously. Some have produced documentation 
and proofs to support certification, and several 
have even achieved some level of certification 
certification.  

Aircraft certification, of course, applies to a 
complete system rather than individual 
components. For an avionics system therefore, 
the safety case must form part of the overall 
aircraft safety case. Given, however, that the 
move to advanced avionic concepts will support 
regular upgrades, the generation of a full safety 
case for each upgrade would not be practical. A 
modular approach is therefore proposed for the 
safety case itself, this is discussed in the paper. 

In addition to showing that COTS software 
components can meet safety requirements, they 
must also be shown to be reliable and 
maintainable throughout the life of a helicopter 
platform. Software failure prediction techniques 
have been used across many application 
domains, and software reliability modelling is 
now a highly developed area in software 
measurement. The results of research to 
determine the applicability of these techniques 
for avionics software are discussed, again with 
emphasis on the real-time operating system 
(RTOS) software. 

Introduction 
Whilst the functional requirements and cost 

of helicopter avionic systems have increased 
rapidly relative to overall platform costs, the 
defence industries proportion of the electronics 
market has fallen to under 1%. In order to 
exploit the huge investments and developments 
aimed at the commercial market, military 
systems will become increasingly dependent 
upon COTS (Commercial Off The Shelf) 
components for both hardware and software. 
Although these products may appear to meet 
real-time performance requirements individually 
their integration and certification in aircraft 
systems requires rigorous proof of correctness. 
The problem of certification of systems with 
COTS components is exacerbated by the rate at 
which new versions of the products are released, 
which may not be compatible with other system 
components. 

The UK Ministry of Defence (MOD) has 
therefore funded Sensor and Avionic Systems 
Department (SASD) of DERA to conduct 
research into the integration of COTS 
components into advanced avionic systems. 
Although helicopter systems are a key 
exploitation route for this programme, it is 
relevant to all airborne platforms that rely on 
processing systems to complete missions 
effectively. The study has been supported by 
Praxis Critical Systems who have provided 
expertise in the assessment of systems for high 
integrity applications.  

A key area of concern for integrating 
commercially available software products into 
high integrity systems is proving that the 
software will be both safe and reliable. These 
areas have been tackled differently and the 
results so far are summarised in this paper. 
Although many of the results may be applicable 
to a wide range of software components, the 
focus for the research has been the operating 
system. It is felt that this will have the greatest 
impact on affordability and flexibility, and 
presents the greatest challenge for certification 
and re-certification of the platform. 

Safety and Reliability Definitions 
Although safety and reliability requirements 

may be related, they clearly cannot be treated as 
identical. While it may seem likely that a highly 
reliable system will be safe and therefore easy to 
certify, and visa versa, there is no guarantee of 
this in practice. In fact, there are plenty of 
examples of systems that are very reliable but 
considered to be unsafe, and also examples of 
systems that exhibit very low reliability but that 
are safe. Both of these characteristics have 
therefore been addressed. 

For software components the ANSI 
definition of reliability is ‘The probability of 
failure free software operation for a specified 
time in a specified environment’.  For the 
purpose of this study a failure is assumed to be a 
deviation from the intended specification, not 
simply a deviation from a specification which 
itself may be incorrect.  

Safety[1] is defined in terms of the features 
that have been implemented in order to reduce to 
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an acceptable level, or even eliminate, the risk of 
a hazard occurring. A safety requirement can 
therefore be described using a desired behaviour 
and a set of conditions under which this 
behaviour is safe. Safety integrity is defined as 

the probability of a safety-relate
satisfactorily performing the requi
functions under all stated condition
stated period of time.  

Safety integrity is composed
components, systematic safety inte
random safety integrity, where: 

• Systematic safety integrity i
the claim that the system is

errors, that under a particular set of 
conditions will cause a failure. 

• Random safety integrity is based on the 
claim that for the stated period of time 

Standard and Definition of Safety Int

DEF STAN 00-55 

(UK military standard for avionics) 

The likelihood of a system achieving its
features under all the stated conditions w
measure of use. 

RTCA D0-178B 

(US standard for avionics) 

Does not define the term. 

IEC-61508 

(International standard for industrial con
tailoring is expected if it is to be applied

Safety integrity: Probability of a safety
satisfactorily performing the required sa
under all the stated conditions within a s
time. 

Software safety integrity: measure that
likelihood of software in a programmabl
system achieving its safety functions un
conditions within a stated period of time

Systematic safety integrity: part of the
safety-related systems relating to system
dangerous mode of failure. 

 

Table 1.  Safety Certification Standards 

egrity Definition of Safety Integrity Levels 

 required safety 
ithin a stated 

SIL is an indicator, assigned in accordance with Def Stan 
00-56, of the required level of safety integrity. 

There are four safety integrity levels defined, S1, S2, S3, 
and S4, where S1 is the least critical and S4 is the most 
critical (safety critical). 

Mentions Software Levels.  A software level is based upon 
the contribution of software to potential failure conditions as 
determined by the system safety assessment process.  The 
software level implies that the level of effort required to 
show compliance with certification requirements varies with 
the failure condition category. 

The defined software levels are Level A, Level B, Level C, 
Level D, and Level E, where Level E is the least critical and 
Level A is most critical. 

Safety integrity level: discrete level (one out of a possible 
d system 
red safety 
s within a 

 of two 
grity and 

s based on 
 free from 

the system will not suffer from failure 
caused by random failure mechanisms 
in the hardware. 

trol etc. Some 
 to avionics) 

-related system 
fety functions 
tated period of 

 signifies the 
e electronic 
der all stated 
. 

 safety integrity of 
atic failures in a 

four) for specifying the safety integrity requirements of the 
safety functions to be allocated to the E/E/PE safety-related 
systems. 

The defined levels are SIL1, SIL2, SIL3, and SIL4, where 
SIL4 has the highest level of safety integrity and SIL1 has 
the lowest. 

Software safety integrity level: discrete level (one out of a 
possible four) for specifying the safety integrity of software 
in a safety-related system. 

 The definitions of safety integrity and 
safety integrity levels vary slightly across the 
various standards.  Table 1 gives the definitions 
provided by DEF STAN 00-55[2], RTCA DO-
178B[3], and IEC 61508[4]. 

For the purposes of this document the 
terminology of Def Stan 00-55, which defines 
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the requirements for safety related software in 
defence equipment, is used. 

Software Integrity Assessment  
It appears likely that some COTS software 

products can meet cost and real-time 
performance requirements for avionic systems. 
The issue of demonstrating reliability and safety, 
however, has not proved to be as 
straightforward. These two areas have therefore 
been considered separately, although the basic 
question remains the same: ‘Is it both possible 
and worthwhile to use complex COTS software 
components in avionic systems for future aircraft 
and upgrade programmes?’ 

Software Safety  
Until a few years ago it seemed unlikely 

that it would be possible to meet UK military 
certification requirements for a rotorcraft, or any 
other airborne platform, using a COTS 
component as complicated as an operating 
system controlling mission or safety critical 
functions. Even if it was possible, it seemed that 
the costs involved to prove this would be 
prohibitive and the traditional approach of 
developing bespoke, ie non-COTS, solutions 
would be more cost effective. Since that time, 
however, operating system vendors have taken 
this problem seriously. Some have produced 
documentation and proofs to support 
certification, and several have even achieved 
component certification. The feasibility of 
achieving platform certification for a system 
with complex COTS components is the subject 
of a UK MOD research programme.  

Whilst pseudo-operational testing and 
analysis can be applied to systems with 
reliability requirements in the order of 1 x 104 
hours, safety related systems require a reliability 
in the order 1 x 108 hours. Although the random 
element of this can be shown using numerical 
analysis, the systematic element cannot be 
measured reliably for such small probabilities. 
Most current safety standards address this 
problem by assigning safety integrity levels 
(SILs) to safety related functions (see Table 1). 
The higher the integrity level, the greater the 
degree of rigour required in developing the 

software. The SIL, however, is not the only 
requirement for certification. It is this point that 
has caused some confusion with respect to the 
certification of the implemented software 
component. Some software developers have 
claimed that their software is safe because it has 
been developed in accordance with processes 
commensurate with the assigned SIL. While this 
may go a long way to achieving certification, is 
not the entire requirement. Successful 
certification is also dependent upon the integrity 
of the final executable, which may contain 
components not covered by the defined process. 
Reference will also need to be made to the 
specific hardware on which the software 
executes and integration with other software 
components.  

The Software Safety Case (SSC) provides a 
means of presenting all arguments required for 
safety certification. The issues surrounding the 
development of the SSC for avionic systems 
containing COTS software products has been the 
subject of this research. Although the avionic 
system will include a large number of software 
components of different types, a particular 
problem was identified with operating system 
certification. This is, potentially, a very complex 
component and one that has commercial support 
from a range of vendors. The operating system is 
also a component likely to require upgrading as 
hardware resources are themselves upgraded to 
take advantage of commercial developments.  

In order to assess the safety of commercial 
operating systems in avionic systems the 
following questions must be addressed: 

• What kinds of operating systems are 
available commercially? 

• How can we determine the level of 
integrity required for a Real-Time 
Operating System (RTOS)? 

• Can a commercial off the shelf RTOS 
demonstrate this level of integrity? 

• How much certification support is 
available from the RTOS vendor 
throughout the lifetime of the product? 

There are a number of commercially 
available RTOSs that have been specifically 
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developed for high integrity application. 
Examples are OSE from ENEA OSE Systems, 
VRTX from Mentor Graphics Corporation, QNX 
from QNX Software Systems Limited, LynxOS 
from Lynx Real-Time Systems, and RTEMS, 
which was developed under contract to the US 
Army Missile Command. These have varying 
levels of certification track record.  It is not 
clear, however, whether any of these COTS 
RTOS will be able to demonstrate compliance 
with the highest level of integrity.   

The operating system providing the focus 
for this study is OSE. This contains 70 system 
calls of which 30, the safe kernel, have been 
certified to S3 in accordance with IEC 61508.   

In order to achieve certification proof must 
be provided in the safety case that the system 
meets its integrity requirements. This proof 
would be based on the application of rigorous 
development techniques and evidence obtained 
from verification and validation activities, which 
should be subject to independent assessment and 
audit. As already stated, the certification applies 
to a complete system rather than individual 
components. For an avionics system therefore, 
the safety case must form part of the overall 
aircraft safety case. Given, however, that the 
move to advanced avionic concepts will support 
regular upgrades, the generation of a full safety 
case for each upgrade would not be practical. A 
modular approach is therefore proposed for the 
safety case itself. The arguments for components 
of the system will be presented as self-contained 
elements allowing the reuse of existing elements 
for re-certification in the case of a component 
upgrade. The component safety arguments 
should contain: 

• component safety requirements for the 
specific avionic application or 
applications. 

• the argument for and evidence that the 
safety requirements have been met. 

• restrictions and guidelines that apply to 
the safe integration of the component 
into the system. 

Specifically, for an RTOS, the safety case 
should include: 

• Scope.  To contain a description of the 
system in which the software operates, 
record any assumptions for the arguments 
made, and discuss updates and change 
control. 

• Software description.  To discuss the 
operational behavior of the RTOS. 

• Software safety requirements.  To 
discuss the safety requirements on the 
RTOS as part of the avionics application, 
including how they are derived and 
defined. 

• Software architecture.  To describe the 
RTOS architecture, overview of protocols 
used, essential operations, etc. 

• Software development process.  To 
provide a description of the RTOS 
development process and the tools that 
have been used during this process. 

• Safety arguments.  Arguments should be 
presented to demonstrate that the risk of 
an error in RTOS software leading to a 
hazard is acceptable.  

• Discussion of issues.  Any outstanding 
issues that affect the integrity of the RTOS 
should be identified. 

• Conclusions.  This provides an 
engineering judgement as to whether the 
risk of an error in the COTS RTOS 
leading to a hazard is within acceptable 
limits. 

Initial research indicated that some 
operating system vendors would be able, and 
willing, to provide evidence in support of such a 
safety case. However, given that none had yet 
achieved the highest level of product 
certification it was clear that further assurance 
was required. It was decided that this should be 
addressed by sending a team of industry and 
DERA experts to the software development 
headquarters of a real-time operating system 
vendor. An assessment plan was developed and 
ENEA OSE Systems agreed to facilitate the 
visit, and make sure that senior software 
engineers were available to answer questions and 
provide detailed evidence of software 
development and verification processes.  
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The results of this evaluation are now being 
used to develop a ‘draft’ safety case for a high 
integrity application executing under the control 
of a commercial RTOS. Given the scope of the 
study, which is aimed at evaluating the 
practicality of such an approach to system design 
rather than full system development, a single 
application has been selected. This is a Stores 
Management System (SMS) which is considered 
to be complex enough for proof of concept but 
within the scope of a research programme.  

60.6 

Whilst considerable progress is being made 
by operating system vendors to meet the 
requirements of mission critical and safety 
critical systems, and MOD research is 
developing methods and techniques to support 
the introduction of COTS software, there are still 
questions to be answered. These centre on the 
questions of not only the technical viability of 
the concept for initial system development, but 
how systems made up of COTS components will 
be maintained and upgraded. It is therefore 
intended that these issues will be addressed as 
part of the ongoing programme 

Software Reliability 
Most current system reliability analysis is 

centred on the reliability of the hardware, but 
ignores software, effectively assigning it a 
reliability of 1. This is further complicated by 
the fact that for certain certification activities, 
software is attributed a reliability of 0, ie no 
credit is given for the integrity of software 
products. This obviously provides no help in 
answering the real question, ie ‘when can 
software be accepted for system implementation, 
not just for safety critical but in all applications?’ 
The system designer wants primarily to be able 
to measure the reliability of the software 
subsystem at a given time. This can then be 
compared with the reliability target to decide 
whether the software is fit for release. However, 
it is also a requirement to predict the level of 
reliability that will be achieved following a 
given amount of testing effort. It became clear 
that techniques with a more scientific basis were 
needed to predict software behavior more 
accurately and to mitigate the effects of software 
faults. 

Although software failure mechanisms 
differ from those experienced with hardware 
they can both be described by probability 
distributions. However, while some electronics 
failures can be modelled using constant failure 
rates, i.e. an exponential reliability distribution, 

 

Figure 1. Software execution model 

 

 

 

 

 

 

 

the failure rates of software cannot be assumed 
to be random. Although the individual times to 
failure may be random, there is usually a trend. 
For example, if errors are detected and either 
corrected, or the software used in such a way as 
to minimise the probability of these errors 
occurring, the reliability will tend to improve. If, 
however, maintenance actions are carried out 
without carefully considering the side effects, 
although one fault may be fixed others may be 
introduced. The reliability of the software may 
therefore deteriorate.  Software failures must 
therefore be modelled as a non-linear, non-
stationary process. 

The basic software execution model used is 
shown in Figure 1.  

The input spectrum refers to all possible 
combinations of inputs to a software process. A 
subset of these, IF, will produce unacceptable 
outputs, i.e. OF. The objective of software 
reliability analysis is to determine the likelihood 
of such an event, or combination of events, 
occurring. 

The two main types of model are prediction 
models and growth models. Prediction models 
use parameters associated with the software 
product and the development environment, for 
example language, complexity, level of reuse, 
size, and the level of interconnection of the 
compilation units, to make judgements regarding 

       Input Spectrum             Software Process               Output Spectrum

      IF       OF



reliability. The technique requires a ‘proof 
program’, or baseline, for comparison. The 
criterion for this baseline is similarity, which 
often cannot be achieved. Given the diversity of 
software in avionics it was felt that such a 
baseline would not be available, and research 
focussed on growth models. 

Growth models, sometimes called 
parametric models, use failure data from the 
application being modelled to determine 
parameters affecting reliability. This is used to 
estimate the probability that a system will not 
fail during a given time period.  

The key requirements and assumptions for 
applying growth modelling techniques to 
software are that: 

• The failures are randomly distributed across 
the set of possible inputs. This can generally 
be assumed if we do not know the inputs 
(see Figure 1) that will cause failures or the 
order in which they will be selected from the 
input space. 

• Actual data from the software being 
executed in a representative environment is 
available.  

• Extensive software changes are not routinely 
made while data is collected. 

• All software changes to correct faults are 
perfect, ie a given fault will not occur twice. 
In the case of COTS software components it 
may not be possible to make such changes 
immediately. In this case either the 
knowledge of the fault may be used to 
control the selection from the input space, or 
later manifestations of the fault could be 
discounted for modelling purposes. This is 
not identical, however, as faults that would 
have been unlocked by fixing other faults 
will not now show themselves.  

Numerous models and tools are available 
for growth modelling, each with their own 
mathematics. These can be categorised 
depending on, for example, assumptions of 
whether a finite or infinite number of faults will 
occur in an infinite time, the distribution of 
cumulative failures, and the failure intensity 

function in terms of time (eg Weibul, 
exponential, or gamma). 

Examples of these models[5,6] are 
Certification, Geometric, Goel-Okumoto, 
Hyperexponential, Jelinski-Moranda, 
Littlewood-Verrall, Musa-Okumoto, 
Schneidewind, and Shooman.  It is not the aim 
of this paper to go into details of specific 
models, but to indicate how they could be 
applied in the real world. It became clear that no 
single model was universally applicable, and that 
even if a model appeared to work very well for a 
particular application there was no guarantee that 
this trend would continue. It would be very 
likely that a model that performed very well 
would become out-performed by a model that 
earlier in the assessment had performed badly. 
The three forms of inaccuracy are noise, 
consistent bias, and non-stationary bias. 

Until recently this made many models unusable 
and the confidence in the whole approach of 
growth modelling was affected. However, 
solutions have been developed to alleviate these 
problems. These are now summarised: 

Prequential Likelihood (PL)[6] and the 
Prequential Likelihood Ratio (PLR) enable the 
comparison of the performance of several 
models for a given data set. The PL is a measure 
that denotes a model’s accumulated accuracy. 
This is calculated for each model that has been 
applied to the software being assessed, and the 
ratio determined for any two models. This will 
show which of them is performing best.  
Repeated calculations of ratios for other models 
and the ‘best’ found so far will give the most 
suitable model for the data available. 

While PLRs allow comparisons to be made 
between the performance of models they do not 
tell us anything about the true accuracy of a 
model. U-plots provide a method to determine 
whether the predictions, on average, are close to 
the true distributions. While the u-plot will 
provide a measurement of consistent bias, a 
further technique called the y-plot can be used to 
detect non-stationarity.  

It is hoped that by eliminating unsuitable 
models a model will be left that provides fairly 
accurate predictions. However, in many cases it 
turns out that none of the models can provide the 
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required accuracy without further intervention. A 
comparatively recent development is 
recalibration. This technique aims to detect bias 
in a model’s predictions and feed an appropriate 
compensation factor back into the model so as to 
remove this bias. We are therefore trying to find 
a function Gi that would transform the existing 
prediction, , onto reality, F)(€ tFi i(t). Therefore: 

)](€[)( tFGtF iii =  

This can provide a significant improvement 
in the predictions being made, even when the 
predictions have some degree of non-
stationarity. Tool support is currently being 
developed for recalibration. 

Applicability to COTS 
The problem with modelling the reliability 

of COTS software[7] is the typical lack of 
knowledge regarding the structure of the 
component, or underlying factors that determine 
its reliability. As far as reliability analysis goes 
COTS does not form a software classification in 
its own right. Indeed there are a variety of 
techniques that apply for commercial software, 
influenced by the way that the software is used 
and its basic function.  

In the case of software with an accurate and 
complete in-service history, then it would be 
possible to provide a prediction for the Mean 
Time Between failures (MTBF). It is also 
essential to understand the operational profile of 
the history in order to relate this accuracy to any 
new application. 

 
For commercial software components 

without a clear history, pseudo-operational 
testing would be required to estimate reliability. 
This would be in addition to any validation or 
conformance testing. If the test regime is strictly 
in accordance with the intended operational 
profile of the system then there is no reason why 
parametric modelling should not be used to 
provide good results. These techniques could 
then provide confidence in MTBF up to the 
order of 1 x 104 hours. (Note – this figure relates 
to what is practically possible rather than 
theoretically possible). However, if acceptance 
testing is more of a continuation of system 
testing, ie to find faults even if they would not 

have caused an operational failure, then other 
modelling techniques would be more suitable.  

 
Where applications require confidence 

greater than an order of 1 x 104 hours, eg safety 
related functions, software reliability modelling 
techniques alone would not be enough to achieve 
certification. It is, however, possible to build 
commercial components into a higher integrity 
application using techniques such as safe 
partitioning and fault tolerance. This has already 
been achieved successfully in federated avionic 
systems and has much scope for further research. 

Conclusions and Future Studies 
In addition to showing that COTS software 

components can meet functional and 
performance requirements, they must also be 
shown to be reliable and safe. This has been a 
major stumbling block in their acceptance and 
has often led to bespoke solutions. These areas 
have therefore provided the focus for research 
into the application of COTS in avionic systems. 
It is important to appreciate that although COTS 
products present their own challenges, bespoke 
software is not immune from problems of safety 
and reliability acceptance. Also, bespoke 
products will not benefit from the wider usage 
and very large user base of their commercial 
counterparts.  

The increasing dependence of rotorcraft 
systems on complex software is such that 
software safety certification is a growing 
problem. Although the study has been primarily 
aimed at commercial RTOSs, many of the 
techniques, and the expertise, developed are 
applicable to other software components. The 
approaches should therefore be applied to 
address other areas with the potential to utilise 
COTS technologies, and where proof of integrity 
has been identified as a potential problem area, 
such as automatic system reconfiguration. 

Experiences gained from the integration of 
COTS software products in complex, high 
integrity systems should be closely monitored 
with reference to cost, reliability, and 
performance.  These lessons will be invaluable 
for determining the most suitable approach for 
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using commercial solutions for avionic upgrades 
and new systems. 

With respect to software reliability, the 
development of models and tools to predict 
reliability of software has been the subject of 
extensive research in academia, government, and 
industry and should not be ignored. Although a 
general solution has not, and will probably never 
be found for COTS, the real issue that must be 
considered is ‘what is the alternative?’ A more 
scientific approach to determine if and when 
software can be accepted rather than assuming 
that the most recent correction will be the last 
must be advantageous. The techniques studied 
can provide this scientific basis and have been 
used successfully for some major projects. 

The potential benefits of the research will 
only be achieved if clear exploitation routes are 
determined and followed up. Several helicopter 
programmes have already been identified and 
future research activities will take into account 
specific constraints and requirements of these 
systems. 
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