
DETERMINING THE INTEGRITY OF COMMERCIAL SOFTWARE IN
ADVANCED AVIONIC SYSTEMS

Mike Lane, Sensor and Avionic Systems Department, Defence Evaluation and Research
Agency (DERA), Farnborough, Hampshire, UK

Abstract
Rotorcraft platforms are becoming

increasingly dependent upon electronic systems
controlled by software to meet functionality
requirements. This is further driven by
requirements to reduce platform weight and
complexity by replacing hydraulic and
mechanical systems, where possible, with
electronics. The result is that avionics can now
account for over 40% of the through-life costs of
rotorcraft platforms. The requirement to support
increasingly demanding application functions is
such that this figure, in both absolute terms and
as a percentage of the total system cost, is set to
increase for new platforms and upgrades to
existing systems. If these costs are to be
contained avionic systems will become
increasingly dependent upon COTS
(Commercial Off The Shelf) components for
both hardware and software. Although these
products may appear to meet real-time
performance requirements individually their
integration and certification in aircraft systems
requires rigorous proof of correctness. The
problem of certification of systems with COTS
components is exacerbated by the rate at which
new versions of the products are released, which
may not be compatible with other system
components. The UK Ministry of Defence
(MOD) has therefore funded research into the
integration of COTS components into advanced
avionic systems.

While the use of commercially available
hardware components has, to some extent, been
accepted as the only way forward, the use of
COTS software components has been highly
contentious. Although the potential benefits can
still apply to software, new challenges are
introduced that must be overcome. Although
software does not fail in the same way as
hardware, the effect on system behaviour can be

just as serious, and the resulting costs even
higher. These problems are exacerbated by the
inherently integrated nature of advanced
avionics. A key area of concern for integrating
commercially available software products into
high integrity systems is proving that the
software will be both safe and reliable. These
areas have been tackled differently and the
results so far are summarised in this paper.

The very idea of trusting COTS software in
a complex real-time system that may affect, or
even be responsible for, safety critical or mission
critical functions has been the subject of much
debate. The concerns have mainly been centred
on dependability and safety certification.
Although an avionic system will include a large
number of software components of different
types, a particular problem was identified with
operating system certification. It is felt that this
will have the greatest impact on affordability and
flexibility, and presents the greatest challenge
for certification and re-certification of the
platform. This is not only a very complex
component, but also one that has commercial
support from a range of vendors. The operating
system is also a component likely to require
upgrading as hardware resources are themselves
upgraded to take advantage of commercial
developments.

Until a few years ago it seemed unlikely
that it would be possible to meet UK military
certification requirements for a platform using a
COTS component as complicated as an
operating system for mission or safety critical
functions. Even if it was possible, it seemed that
the costs involved would be prohibitive and the
traditional approach of developing bespoke, ie
non-COTS, solutions would be more cost
effective. This has been a major stumbling block
in their acceptance and has often led to bespoke
solutions. Since that time, however, operating
system vendors have taken this problem

60.1

seriously. Some have produced documentation
and proofs to support certification, and several
have even achieved some level of certification
certification.

Aircraft certification, of course, applies to a
complete system rather than individual
components. For an avionics system therefore,
the safety case must form part of the overall
aircraft safety case. Given, however, that the
move to advanced avionic concepts will support
regular upgrades, the generation of a full safety
case for each upgrade would not be practical. A
modular approach is therefore proposed for the
safety case itself, this is discussed in the paper.

In addition to showing that COTS software
components can meet safety requirements, they
must also be shown to be reliable and
maintainable throughout the life of a helicopter
platform. Software failure prediction techniques
have been used across many application
domains, and software reliability modelling is
now a highly developed area in software
measurement. The results of research to
determine the applicability of these techniques
for avionics software are discussed, again with
emphasis on the real-time operating system
(RTOS) software.

Introduction
Whilst the functional requirements and cost

of helicopter avionic systems have increased
rapidly relative to overall platform costs, the
defence industries proportion of the electronics
market has fallen to under 1%. In order to
exploit the huge investments and developments
aimed at the commercial market, military
systems will become increasingly dependent
upon COTS (Commercial Off The Shelf)
components for both hardware and software.
Although these products may appear to meet
real-time performance requirements individually
their integration and certification in aircraft
systems requires rigorous proof of correctness.
The problem of certification of systems with
COTS components is exacerbated by the rate at
which new versions of the products are released,
which may not be compatible with other system
components.

The UK Ministry of Defence (MOD) has
therefore funded Sensor and Avionic Systems
Department (SASD) of DERA to conduct
research into the integration of COTS
components into advanced avionic systems.
Although helicopter systems are a key
exploitation route for this programme, it is
relevant to all airborne platforms that rely on
processing systems to complete missions
effectively. The study has been supported by
Praxis Critical Systems who have provided
expertise in the assessment of systems for high
integrity applications.

A key area of concern for integrating
commercially available software products into
high integrity systems is proving that the
software will be both safe and reliable. These
areas have been tackled differently and the
results so far are summarised in this paper.
Although many of the results may be applicable
to a wide range of software components, the
focus for the research has been the operating
system. It is felt that this will have the greatest
impact on affordability and flexibility, and
presents the greatest challenge for certification
and re-certification of the platform.

Safety and Reliability Definitions
Although safety and reliability requirements

may be related, they clearly cannot be treated as
identical. While it may seem likely that a highly
reliable system will be safe and therefore easy to
certify, and visa versa, there is no guarantee of
this in practice. In fact, there are plenty of
examples of systems that are very reliable but
considered to be unsafe, and also examples of
systems that exhibit very low reliability but that
are safe. Both of these characteristics have
therefore been addressed.

For software components the ANSI
definition of reliability is ‘The probability of
failure free software operation for a specified
time in a specified environment’. For the
purpose of this study a failure is assumed to be a
deviation from the intended specification, not
simply a deviation from a specification which
itself may be incorrect.

Safety[1] is defined in terms of the features
that have been implemented in order to reduce to

60.2

an acceptable level, or even eliminate, the risk of
a hazard occurring. A safety requirement can
therefore be described using a desired behaviour
and a set of conditions under which this
behaviour is safe. Safety integrity is defined as

the probability of a safety-relate
satisfactorily performing the requi
functions under all stated condition
stated period of time.

Safety integrity is composed
components, systematic safety inte
random safety integrity, where:

• Systematic safety integrity i
the claim that the system is

errors, that under a particular set of
conditions will cause a failure.

• Random safety integrity is based on the
claim that for the stated period of time

Standard and Definition of Safety Int

DEF STAN 00-55

(UK military standard for avionics)

The likelihood of a system achieving its
features under all the stated conditions w
measure of use.

RTCA D0-178B

(US standard for avionics)

Does not define the term.

IEC-61508

(International standard for industrial con
tailoring is expected if it is to be applied

Safety integrity: Probability of a safety
satisfactorily performing the required sa
under all the stated conditions within a s
time.

Software safety integrity: measure that
likelihood of software in a programmabl
system achieving its safety functions un
conditions within a stated period of time

Systematic safety integrity: part of the
safety-related systems relating to system
dangerous mode of failure.

Table 1. Safety Certification Standards

egrity Definition of Safety Integrity Levels

 required safety
ithin a stated

SIL is an indicator, assigned in accordance with Def Stan
00-56, of the required level of safety integrity.

There are four safety integrity levels defined, S1, S2, S3,
and S4, where S1 is the least critical and S4 is the most
critical (safety critical).

Mentions Software Levels. A software level is based upon
the contribution of software to potential failure conditions as
determined by the system safety assessment process. The
software level implies that the level of effort required to
show compliance with certification requirements varies with
the failure condition category.

The defined software levels are Level A, Level B, Level C,
Level D, and Level E, where Level E is the least critical and
Level A is most critical.

Safety integrity level: discrete level (one out of a possible
d system
red safety
s within a

 of two
grity and

s based on
 free from

the system will not suffer from failure
caused by random failure mechanisms
in the hardware.

trol etc. Some
 to avionics)

-related system
fety functions
tated period of

 signifies the
e electronic
der all stated
.

 safety integrity of
atic failures in a

four) for specifying the safety integrity requirements of the
safety functions to be allocated to the E/E/PE safety-related
systems.

The defined levels are SIL1, SIL2, SIL3, and SIL4, where
SIL4 has the highest level of safety integrity and SIL1 has
the lowest.

Software safety integrity level: discrete level (one out of a
possible four) for specifying the safety integrity of software
in a safety-related system.

 The definitions of safety integrity and
safety integrity levels vary slightly across the
various standards. Table 1 gives the definitions
provided by DEF STAN 00-55[2], RTCA DO-
178B[3], and IEC 61508[4].

For the purposes of this document the
terminology of Def Stan 00-55, which defines

60.3

the requirements for safety related software in
defence equipment, is used.

Software Integrity Assessment
It appears likely that some COTS software

products can meet cost and real-time
performance requirements for avionic systems.
The issue of demonstrating reliability and safety,
however, has not proved to be as
straightforward. These two areas have therefore
been considered separately, although the basic
question remains the same: ‘Is it both possible
and worthwhile to use complex COTS software
components in avionic systems for future aircraft
and upgrade programmes?’

Software Safety
Until a few years ago it seemed unlikely

that it would be possible to meet UK military
certification requirements for a rotorcraft, or any
other airborne platform, using a COTS
component as complicated as an operating
system controlling mission or safety critical
functions. Even if it was possible, it seemed that
the costs involved to prove this would be
prohibitive and the traditional approach of
developing bespoke, ie non-COTS, solutions
would be more cost effective. Since that time,
however, operating system vendors have taken
this problem seriously. Some have produced
documentation and proofs to support
certification, and several have even achieved
component certification. The feasibility of
achieving platform certification for a system
with complex COTS components is the subject
of a UK MOD research programme.

Whilst pseudo-operational testing and
analysis can be applied to systems with
reliability requirements in the order of 1 x 104
hours, safety related systems require a reliability
in the order 1 x 108 hours. Although the random
element of this can be shown using numerical
analysis, the systematic element cannot be
measured reliably for such small probabilities.
Most current safety standards address this
problem by assigning safety integrity levels
(SILs) to safety related functions (see Table 1).
The higher the integrity level, the greater the
degree of rigour required in developing the

software. The SIL, however, is not the only
requirement for certification. It is this point that
has caused some confusion with respect to the
certification of the implemented software
component. Some software developers have
claimed that their software is safe because it has
been developed in accordance with processes
commensurate with the assigned SIL. While this
may go a long way to achieving certification, is
not the entire requirement. Successful
certification is also dependent upon the integrity
of the final executable, which may contain
components not covered by the defined process.
Reference will also need to be made to the
specific hardware on which the software
executes and integration with other software
components.

The Software Safety Case (SSC) provides a
means of presenting all arguments required for
safety certification. The issues surrounding the
development of the SSC for avionic systems
containing COTS software products has been the
subject of this research. Although the avionic
system will include a large number of software
components of different types, a particular
problem was identified with operating system
certification. This is, potentially, a very complex
component and one that has commercial support
from a range of vendors. The operating system is
also a component likely to require upgrading as
hardware resources are themselves upgraded to
take advantage of commercial developments.

In order to assess the safety of commercial
operating systems in avionic systems the
following questions must be addressed:

• What kinds of operating systems are
available commercially?

• How can we determine the level of
integrity required for a Real-Time
Operating System (RTOS)?

• Can a commercial off the shelf RTOS
demonstrate this level of integrity?

• How much certification support is
available from the RTOS vendor
throughout the lifetime of the product?

There are a number of commercially
available RTOSs that have been specifically

60.4

developed for high integrity application.
Examples are OSE from ENEA OSE Systems,
VRTX from Mentor Graphics Corporation, QNX
from QNX Software Systems Limited, LynxOS
from Lynx Real-Time Systems, and RTEMS,
which was developed under contract to the US
Army Missile Command. These have varying
levels of certification track record. It is not
clear, however, whether any of these COTS
RTOS will be able to demonstrate compliance
with the highest level of integrity.

The operating system providing the focus
for this study is OSE. This contains 70 system
calls of which 30, the safe kernel, have been
certified to S3 in accordance with IEC 61508.

In order to achieve certification proof must
be provided in the safety case that the system
meets its integrity requirements. This proof
would be based on the application of rigorous
development techniques and evidence obtained
from verification and validation activities, which
should be subject to independent assessment and
audit. As already stated, the certification applies
to a complete system rather than individual
components. For an avionics system therefore,
the safety case must form part of the overall
aircraft safety case. Given, however, that the
move to advanced avionic concepts will support
regular upgrades, the generation of a full safety
case for each upgrade would not be practical. A
modular approach is therefore proposed for the
safety case itself. The arguments for components
of the system will be presented as self-contained
elements allowing the reuse of existing elements
for re-certification in the case of a component
upgrade. The component safety arguments
should contain:

• component safety requirements for the
specific avionic application or
applications.

• the argument for and evidence that the
safety requirements have been met.

• restrictions and guidelines that apply to
the safe integration of the component
into the system.

Specifically, for an RTOS, the safety case
should include:

• Scope. To contain a description of the
system in which the software operates,
record any assumptions for the arguments
made, and discuss updates and change
control.

• Software description. To discuss the
operational behavior of the RTOS.

• Software safety requirements. To
discuss the safety requirements on the
RTOS as part of the avionics application,
including how they are derived and
defined.

• Software architecture. To describe the
RTOS architecture, overview of protocols
used, essential operations, etc.

• Software development process. To
provide a description of the RTOS
development process and the tools that
have been used during this process.

• Safety arguments. Arguments should be
presented to demonstrate that the risk of
an error in RTOS software leading to a
hazard is acceptable.

• Discussion of issues. Any outstanding
issues that affect the integrity of the RTOS
should be identified.

• Conclusions. This provides an
engineering judgement as to whether the
risk of an error in the COTS RTOS
leading to a hazard is within acceptable
limits.

Initial research indicated that some
operating system vendors would be able, and
willing, to provide evidence in support of such a
safety case. However, given that none had yet
achieved the highest level of product
certification it was clear that further assurance
was required. It was decided that this should be
addressed by sending a team of industry and
DERA experts to the software development
headquarters of a real-time operating system
vendor. An assessment plan was developed and
ENEA OSE Systems agreed to facilitate the
visit, and make sure that senior software
engineers were available to answer questions and
provide detailed evidence of software
development and verification processes.

60.5

The results of this evaluation are now being
used to develop a ‘draft’ safety case for a high
integrity application executing under the control
of a commercial RTOS. Given the scope of the
study, which is aimed at evaluating the
practicality of such an approach to system design
rather than full system development, a single
application has been selected. This is a Stores
Management System (SMS) which is considered
to be complex enough for proof of concept but
within the scope of a research programme.

60.6

Whilst considerable progress is being made
by operating system vendors to meet the
requirements of mission critical and safety
critical systems, and MOD research is
developing methods and techniques to support
the introduction of COTS software, there are still
questions to be answered. These centre on the
questions of not only the technical viability of
the concept for initial system development, but
how systems made up of COTS components will
be maintained and upgraded. It is therefore
intended that these issues will be addressed as
part of the ongoing programme

Software Reliability
Most current system reliability analysis is

centred on the reliability of the hardware, but
ignores software, effectively assigning it a
reliability of 1. This is further complicated by
the fact that for certain certification activities,
software is attributed a reliability of 0, ie no
credit is given for the integrity of software
products. This obviously provides no help in
answering the real question, ie ‘when can
software be accepted for system implementation,
not just for safety critical but in all applications?’
The system designer wants primarily to be able
to measure the reliability of the software
subsystem at a given time. This can then be
compared with the reliability target to decide
whether the software is fit for release. However,
it is also a requirement to predict the level of
reliability that will be achieved following a
given amount of testing effort. It became clear
that techniques with a more scientific basis were
needed to predict software behavior more
accurately and to mitigate the effects of software
faults.

Although software failure mechanisms
differ from those experienced with hardware
they can both be described by probability
distributions. However, while some electronics
failures can be modelled using constant failure
rates, i.e. an exponential reliability distribution,

Figure 1. Software execution model

the failure rates of software cannot be assumed
to be random. Although the individual times to
failure may be random, there is usually a trend.
For example, if errors are detected and either
corrected, or the software used in such a way as
to minimise the probability of these errors
occurring, the reliability will tend to improve. If,
however, maintenance actions are carried out
without carefully considering the side effects,
although one fault may be fixed others may be
introduced. The reliability of the software may
therefore deteriorate. Software failures must
therefore be modelled as a non-linear, non-
stationary process.

The basic software execution model used is
shown in Figure 1.

The input spectrum refers to all possible
combinations of inputs to a software process. A
subset of these, IF, will produce unacceptable
outputs, i.e. OF. The objective of software
reliability analysis is to determine the likelihood
of such an event, or combination of events,
occurring.

The two main types of model are prediction
models and growth models. Prediction models
use parameters associated with the software
product and the development environment, for
example language, complexity, level of reuse,
size, and the level of interconnection of the
compilation units, to make judgements regarding

 Input Spectrum Software Process Output Spectrum

 IF OF

reliability. The technique requires a ‘proof
program’, or baseline, for comparison. The
criterion for this baseline is similarity, which
often cannot be achieved. Given the diversity of
software in avionics it was felt that such a
baseline would not be available, and research
focussed on growth models.

Growth models, sometimes called
parametric models, use failure data from the
application being modelled to determine
parameters affecting reliability. This is used to
estimate the probability that a system will not
fail during a given time period.

The key requirements and assumptions for
applying growth modelling techniques to
software are that:

• The failures are randomly distributed across
the set of possible inputs. This can generally
be assumed if we do not know the inputs
(see Figure 1) that will cause failures or the
order in which they will be selected from the
input space.

• Actual data from the software being
executed in a representative environment is
available.

• Extensive software changes are not routinely
made while data is collected.

• All software changes to correct faults are
perfect, ie a given fault will not occur twice.
In the case of COTS software components it
may not be possible to make such changes
immediately. In this case either the
knowledge of the fault may be used to
control the selection from the input space, or
later manifestations of the fault could be
discounted for modelling purposes. This is
not identical, however, as faults that would
have been unlocked by fixing other faults
will not now show themselves.

Numerous models and tools are available
for growth modelling, each with their own
mathematics. These can be categorised
depending on, for example, assumptions of
whether a finite or infinite number of faults will
occur in an infinite time, the distribution of
cumulative failures, and the failure intensity

function in terms of time (eg Weibul,
exponential, or gamma).

Examples of these models[5,6] are
Certification, Geometric, Goel-Okumoto,
Hyperexponential, Jelinski-Moranda,
Littlewood-Verrall, Musa-Okumoto,
Schneidewind, and Shooman. It is not the aim
of this paper to go into details of specific
models, but to indicate how they could be
applied in the real world. It became clear that no
single model was universally applicable, and that
even if a model appeared to work very well for a
particular application there was no guarantee that
this trend would continue. It would be very
likely that a model that performed very well
would become out-performed by a model that
earlier in the assessment had performed badly.
The three forms of inaccuracy are noise,
consistent bias, and non-stationary bias.

Until recently this made many models unusable
and the confidence in the whole approach of
growth modelling was affected. However,
solutions have been developed to alleviate these
problems. These are now summarised:

Prequential Likelihood (PL)[6] and the
Prequential Likelihood Ratio (PLR) enable the
comparison of the performance of several
models for a given data set. The PL is a measure
that denotes a model’s accumulated accuracy.
This is calculated for each model that has been
applied to the software being assessed, and the
ratio determined for any two models. This will
show which of them is performing best.
Repeated calculations of ratios for other models
and the ‘best’ found so far will give the most
suitable model for the data available.

While PLRs allow comparisons to be made
between the performance of models they do not
tell us anything about the true accuracy of a
model. U-plots provide a method to determine
whether the predictions, on average, are close to
the true distributions. While the u-plot will
provide a measurement of consistent bias, a
further technique called the y-plot can be used to
detect non-stationarity.

It is hoped that by eliminating unsuitable
models a model will be left that provides fairly
accurate predictions. However, in many cases it
turns out that none of the models can provide the

60.7

required accuracy without further intervention. A
comparatively recent development is
recalibration. This technique aims to detect bias
in a model’s predictions and feed an appropriate
compensation factor back into the model so as to
remove this bias. We are therefore trying to find
a function Gi that would transform the existing
prediction, , onto reality, F)(€ tFi i(t). Therefore:

)](€[)(tFGtF iii =

This can provide a significant improvement
in the predictions being made, even when the
predictions have some degree of non-
stationarity. Tool support is currently being
developed for recalibration.

Applicability to COTS
The problem with modelling the reliability

of COTS software[7] is the typical lack of
knowledge regarding the structure of the
component, or underlying factors that determine
its reliability. As far as reliability analysis goes
COTS does not form a software classification in
its own right. Indeed there are a variety of
techniques that apply for commercial software,
influenced by the way that the software is used
and its basic function.

In the case of software with an accurate and
complete in-service history, then it would be
possible to provide a prediction for the Mean
Time Between failures (MTBF). It is also
essential to understand the operational profile of
the history in order to relate this accuracy to any
new application.

For commercial software components

without a clear history, pseudo-operational
testing would be required to estimate reliability.
This would be in addition to any validation or
conformance testing. If the test regime is strictly
in accordance with the intended operational
profile of the system then there is no reason why
parametric modelling should not be used to
provide good results. These techniques could
then provide confidence in MTBF up to the
order of 1 x 104 hours. (Note – this figure relates
to what is practically possible rather than
theoretically possible). However, if acceptance
testing is more of a continuation of system
testing, ie to find faults even if they would not

have caused an operational failure, then other
modelling techniques would be more suitable.

Where applications require confidence

greater than an order of 1 x 104 hours, eg safety
related functions, software reliability modelling
techniques alone would not be enough to achieve
certification. It is, however, possible to build
commercial components into a higher integrity
application using techniques such as safe
partitioning and fault tolerance. This has already
been achieved successfully in federated avionic
systems and has much scope for further research.

Conclusions and Future Studies
In addition to showing that COTS software

components can meet functional and
performance requirements, they must also be
shown to be reliable and safe. This has been a
major stumbling block in their acceptance and
has often led to bespoke solutions. These areas
have therefore provided the focus for research
into the application of COTS in avionic systems.
It is important to appreciate that although COTS
products present their own challenges, bespoke
software is not immune from problems of safety
and reliability acceptance. Also, bespoke
products will not benefit from the wider usage
and very large user base of their commercial
counterparts.

The increasing dependence of rotorcraft
systems on complex software is such that
software safety certification is a growing
problem. Although the study has been primarily
aimed at commercial RTOSs, many of the
techniques, and the expertise, developed are
applicable to other software components. The
approaches should therefore be applied to
address other areas with the potential to utilise
COTS technologies, and where proof of integrity
has been identified as a potential problem area,
such as automatic system reconfiguration.

Experiences gained from the integration of
COTS software products in complex, high
integrity systems should be closely monitored
with reference to cost, reliability, and
performance. These lessons will be invaluable
for determining the most suitable approach for

60.8

using commercial solutions for avionic upgrades
and new systems.

With respect to software reliability, the
development of models and tools to predict
reliability of software has been the subject of
extensive research in academia, government, and
industry and should not be ignored. Although a
general solution has not, and will probably never
be found for COTS, the real issue that must be
considered is ‘what is the alternative?’ A more
scientific approach to determine if and when
software can be accepted rather than assuming
that the most recent correction will be the last
must be advantageous. The techniques studied
can provide this scientific basis and have been
used successfully for some major projects.

The potential benefits of the research will
only be achieved if clear exploitation routes are
determined and followed up. Several helicopter
programmes have already been identified and
future research activities will take into account
specific constraints and requirements of these
systems.

Acknowledgements
The author would like to acknowledge Praxis
Critical Systems for their support throughout this
project.

References

1. Raili Efi, Alan Simpson, April 2001, DERA
COTS Safety, Reliability and Certification
Study – Final Report.

2. Def Stan 00-55, Requirements for Safety
Related Software in Defence Equipment.

3. RTCA DO-178B, Software considerations in
Airborne Syatems and Equipment
Certification.

4. IEC 61508, Functional Safety of
electrical/electronic/programmable
electronic safety-related systems.

5. Simpson, Alan, Iain Lees, February 1997,
Contract Report - Software Reliability Study
by Praxis Critical Systems.

6. Lyu, Michael R, 1996, Handbook of
Software Reliability Engineering, New
York, McGraw-Hill, Chapters 2-4.

7. Simpson, Alan, Iain Lees, February 1997,
Contract Report - Software Reliability Study
by Praxis Critical Systems.

8. Randall, B, C Laprie, H Kopetz, Littlewood
B, 1995, Predictably Dependable
Computing Systems, New York, Springer,

9. Wilcock, Geoff, Terry Totten, Alan Gleave,
Roger Wilson, April 1999, ‘The application
of COTS technology in future modular
avionic systems’, Journal of Defence
Science.

 Crown copyright 2001. Published with
the permission of the Defence Evaluation and

Research Agency on behalf of the Controller of
HMSO.

60.9

	Session Subjects:
	Back to Authors Index:
	Back to Index:

