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Abstract 
 
In recent years Agusta technology of rotor 
architecture has evolved towards an articulated 
configuration with elastomeric spherical bearings for 
the blade retention to the hub and this scheme has 
been adopted both for the main and the tail rotor on 
some products. The process of helicopter 
development and certification, including qualification 
of the elastomeric bearings, requires the knowledge 
of the angular components of motion of the blade link 
that are obtained through deformation of the 
elastomeric bearing. This knowledge is useful for a 
variety of scopes, including validation of analytical 
simulations and codes, flight data analysis, 
endurance and fatigue test spectra of the 
elastomeric components. 
In order to simplify the mechanical installation layout 
of the measurement system, an hybrid approach has 
been developed, where the signals coming from 
some linear and/or angular displacement 
transducers are post-processed by an algorithm 
based on the kinematical relationships imposed by 
the geometrical arrangement of the hub and 
measurement system, to extract the desired 
components of blade angles. This approach has 
been implemented successfully on a number of 
different aircrafts, with some variants related to the 
number and type of sensors that have been used. In 
this paper a review of the method will be presented, 
with a discussion of the underlying hypothesis, the 
tests performed to validate the system and a 
summary of the results. 
 

List of symbols 
 
ζ: lead-lag angle 
β: flap angle 
θ: pitch angle 
θCOLL: collective stick position pitch angle 
θCYCL: ciclic stick position pitch angle 
θPED: pedal position pitch angle 
(∗)0: mean value of the (∗) parameter 
(∗)1REV: 1REV alternate value of the (∗) parameter 
di: generic sensor output 
FC: centrifugal load 
δC : deformation due to the centrifugal load 
U: identity matrix 
RT: rotational matrix 
eB: hinge offset 

SB
ζ : blade lag static moment respect to the 

centre of the hub 
SB

β : blade flap static moment respect to the 
centre of the hub 

Ω: rotor speed 
Kζ : angular lag stiffness 
Kβ : angular flap stiffness 
KB: bearing radial stiffness 
KT: tension link radial stiffness 
δB : bearing deformation due to the centrifugal 

load 
δT : tension link deformation due to the 

centrifugal load 
XM: coordinates of a generic point moving with 

the mast 
XP: coordinates of a generic point moving with 

the blade 
δ3: pitch-flap coupling 
 

Introduction 
 
Articulated rotor configuration with elastomeric 
spherical bearing has spread over the last Agusta 
helicopters, both for the main and the tail rotors. The 
evaluation of the blade angular movements, useful 
for the development and the certification of the 
product, is not a trivial task, because of the 
difficulties to install mechanical sensors measuring 
the three angles separately. An alternative approach 
permits to obtain the angular movements starting 
from other displacements (easily measured by 
transducers) that are processed by a proper 
algorithm. 
In particular, the attention has been devoted to 
minimize the number of sensors to be installed, 
making use, where possible, of already installed 
ones, like the damper stroke and the tail rotor servo 
actuator displacement transducer. 
The method presented in this work shows a feasible 
way to perform this task. 
 

System description 
 
The main hypothesis assumed in this work is that, 
from a kinematical point of view, the blade root can 
be considered as a rigid body connected to the hub 
by means of a spherical hinge (the elastomeric 
bearing) (Figure 1). As such, it has three angular 
degrees of freedom (DOF) that can be expressed as 
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lead-lag (ζ), flap (β) and pitch (θ)i. However, other 
sets of parameters can be chosen as degrees of 
freedom: it can be shown, for example, that the 
distances di between three points of the hub and the 
blade (properly chosen) can univocally define the 
position of the blade as well. The relation between 
the two sets of DOF can be formulated by means of 
some (non linear) transformation, L: 
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The distances di can be experimentally measured by 
means of appropriate transducers and then 
processed to provide the position of the blade in 
terms of ζ, β, θ (direct problem). 
 

Figure 1 Articulated rotor – link between parts 

 
For each distance measurement di provided by a 
sensor, an equation in the form: 
 

( )ϑβζ ,,fdi =  
 
can be written. This relation is in general non linear, 
because large angles are allowed. 
 
If the effects of the deformations (δC) that the 
centrifugal load generates on the (elastomeric) 
bearing and the tension link are included, the relation 
becomes: 
 

( )ci gd δϑβζ ,,,=  
 

                                                 
i
 The angles ζ, β, θ are defined to be the three sequential rotations around 

the axis z-y’-x’’ of a reference frame moving with the blade (Euler 
angles, see Figure 3). 
The following signum conventions have been adopted: 
 ζ (positive with the blade lagging) 
 β (positive with the blade rising up) 
 θ (positive with the profile nose up) 

where the symbol δC indicates that the centrifugal 
deformation can be evaluated a priori and it is not an 
unknown. If the rotor speed is stabilized, the δC term 
is constant and can be evaluated once at the 
beginning of the computation. 
The equation for the ith-transducer can be handled in 
the form: 
 

( ) 0,,,, =ici dh δϑβζ  
 
Since the blade angular movements to be evaluated 
are three, the number of equations (and therefore 
the number of sensors) must not be less than three. 
The non linear system composed by the N equations 
represents the mathematical formulation of the L-
transformation, which solve the direct problem 
(Figure 2). 
 

Figure 2 Direct problem 

 
In the present work the number of equation of the 
system is three (N=3). Due to the non linearity of the 
kinematical equation, it is necessary to take into 
account the problem of the existence and 
uniqueness of the solution. In other words, the 
transformation operator L shall define a biunique 
relation between the two ℜ3 domains corresponding 
to the allowable blade angular motions and the 
sensor measurements. 
This property is strongly influenced by a proper 
location of the sensors: in particular, a geometry of 
installation where each transducer is mainly sensitive 
to a single blade angle can satisfy the requirement. 
 
Kinematical Equations 
 
Let X0

P be the coordinates of a point moving with the 
blade expressed in a blade fixed reference frame 
with origin on its centre of rotation (i.e. the bearing 
centre, see Figure 3). 
Let XP be the coordinates of this point after a generic 
movement of the blade. It can be written: 

TENSION LINK HUB BLADE

bearing fixed-joint 

distance measurements 

DIRECT SOLVER 

( )3,...,, 21 ≥Nddd N

ϑβζ ,,
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( ) 0,, P

T
P XRX ⋅= θβξ  

 

Figure 3 Blade reference frame 

 
where the rotation matrix RT is defined as follow: 
 

( ) ( ) ( ) ( )θβξθβξ T
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It can be seen that RT= U when ζ = β = θ =0. 
 
Effect of the centrifugal load 
 
The amplitude of the centrifugal force FC is: 
 

2Ω⋅= ζ
Bc SF  

with: 
 
 SB

ζ being the blade lag static moment respect to 
the centre of the hub; 

 Ω being the rotor speed. 
 
The deformation due to this load is assumed to be 
directed along the blade span and is related to the 
bearing and the tension link flexibility. If KB and KT 
are respectively the radial stiffness of the bearing 
and the tension link, their deformations are: 
 

B

c
B K

F
=δ  

 

T

c
T K

F
=δ  

 
If the centrifugal effect has to be considered, these 
terms must be added to the x-component of the 
points on the blade, making: 
 

( )cPP XX δ00 =  
 
Transducers/Sensors 
 
Sensors allow to get the linear or angular 
displacement (di) between two points of the blade 
and the hub. 
 
Let 
 XM be the coordinates of a point attached to the 

hub; 
 XP be the coordinates of a point moving with the 

blade. 
 
The blade movements cause variations in the 
displacement between XM and XP that can be 
measured by the sensors, providing the input to the 
problem. 
Linear or angular displacement transducers can be 
used, the actual choice depending on the 
geometrical layout of the hub to be instrumented. 
 

Figure 4 Typical application of a linear sensor 

 
Referring to what said previously, the linear distance 
between XM and XP is: 
 

( ) ( )PM
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The expression can be handled as follows: 
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In order to reduce the number of additional 
transducers to be installed on the prototypes, it is 
possible to make use of existing ones, like the 
damper stroke measurement sensors. 
 
In case of usage of an angular displacement 
transducer, the typical layout of the installation is 
sketched in Figure 5. 
 

Figure 5 Typical application of an angular sensor 

 
If di is the angular displacement of the transducer 
due to movement of XP, then: 
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This leads to: 
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Installation 
 
The geometrical layout of the installation will be 
dependent on the actual configuration of the hub to 
be instrumented. To illustrate the method, a couple 
of different cases will be presented: the first one can 
be representative of a main rotor installation, the 
second one of a tail rotor. They differ in the number 
and kind of sensors used, as well as the geometry of 
the installation. 
 

Main rotor 
 
In this case, two angular sensors have been 
employed which are mainly sensitive to the pitch and 
the flap angle variations respectively. 
A linear sensor embedded in the main rotor damper 
has been used. It is mainly sensitive to the lead-lag 
angle variation. 
Figure 6 shows schematically the geometry of the 
installation of the sensors on the main rotor (the red 
points are connected to the hub, the blue ones to the 
blade). 
 

Figure 6 Main rotor – installation of sensors 

 
Tail rotor 
 
For the tail rotor, only one additional angular sensor 
has been employed to measure mainly the flap angle 
variation. 

 

Figure 7 Tail rotor – installation of sensors 

 
Two linear sensors, embedded respectively in the tail 
rotor damper and in the tail rotor servo actuator, 
have been used to obtain the lead-lag and the pitch 
angle variations respectively. 
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Figure 7 shows a sketch of the installation of the 
sensors on the tail rotor (the red points are 
connected to the hub, the blue ones to the blade). 
 

Numerical algorithm 
 
The numerical algorithm provides the solution of the 
non-linear system represented by the geometrical 
relations written for each transducer. It has been 
used to investigate the issues of biuniqueness of the 
transformation operator L and the sensitivity of the 
solution to the presence of noise into the transducers 
input data. 
 
As already pointed out, due to the non-linearity of the 
system it is possible that multiple solutions exist. The 
investigation lies in solving sequentially an inverse 
and a direct problem: starting from an assigned 
blade angular position (ζ, β, θ), the output of the 
sensors (d1, d2, d3) has been recalculated (inverse 
problem). Then this output becomes the input of the 
direct problem to provide again the blade angular 
position (ζ, β, θ). These operations are repeated for 
a large number of times with a random distribution of 
the angles (ζ, β, θ) covering the entire allowable 
range of blade motions. Comparing the initial 
imposed set of angles (ζ, β, θ) with the recalculated 
ones, it is possible to test the accuracy of the 
solution and to verify the uniqueness of the solution. 
 
To investigate the sensitivity to transducer noise, the 
above process has been modified adding a known 
distribution of noise (defined as a normal distribution 
with null mean value and a prescribed standard 
deviation - stdL for the noise related to a linear 
sensor, stdR for the noise related to an angular 
sensor) to the calculated transducers signals. The 
set (ζ, β, θ) is now the solution of the noisy problem: 
the comparison with the initial set (ζ, β, θ) leads to an 
error that must be related to the amplitude of the 
noise introduced. In this way, it is possible to check if 
the algorithm amplifies or reduces the noise 
magnitude. 
 
Figure 8 shows all these steps in a unique flow chart 
diagram. 
 
Tests have been carried out according to what 
explained above for typical arrangements of the 
sensors corresponding to a main and tail rotor 
configuration, using 1000 sets of three angles (lead-
lag, flap, and pitch) chosen at random in their ranges 
of variation. 
For both the main and the tail rotor, for the case 
without noise no difference between the imposed set 
of angle (ζ, β, θ) and the final one (ζ, β, θ) have been 
found. 

 

Figure 8 Checking the algorithm – flow chart 

 
These runs have led to some useful considerations: 
Figure 9 illustrates the relations between a sensor 
signal and its corresponding blade angle, for the 
main rotor case. It is possible to notice that: 
 
 the damper and the pitch sensor are mainly 

sensitive to the lead-lag and pitch angle 
respectively; 

 the flap sensor is influenced by more than one 
blade angle: in fact, for a fixed value of its stroke, 
a wide range of flap angles are allowed. 

 
To better understand the last statement, it is possible 
to impose a movement of one blade angle 
throughout its range whilst the other two are set to 
zero and to obtain the signals of the sensors in these 
conditions by solving the inverse problem. In this 
way, the effect of one angle on all the sensors can 
be seen. The results are shown in Figure 10. It can 
be noticed that the damper and the pitch sensor are 
sensitive respectively to a lead-lag and pitch 
movement, whilst the flap sensor is sensitive to all 
the three angles. For this reason, when its stroke is 
fixed, there are several values of flap angles, 
corresponding to as many values of lead-lag and flap 
angles. 
 

 ζ, β, θ 
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SOLVER 
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ζ, β, θ 

COMPARISON 

Prescribed 
blade position

Transducers 
measures

Recalculated 
blade angles



XX.6 

          
 

 

 

 

 

 

 

 

Lead−Lag (x) − Flap (+) − Pitch (o)

D
A

M
P

E
R

 (
x)

 −
 F

L
A

P
 S

E
N

S
O

R
 (

+)
 −

 P
IT

C
H

 S
E

N
S

O
R

 (
o

)

Kinematical Couplings

Lead Lag − DAMPER   
Flap − FLAP SENSOR  
Pitch − PITCH SENSOR

 
Figure 9 Main rotor – kinematical couplings 
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Figure 10 Main rotor – sensitivity matrix 

 
Analogous remarks can be formulated for the tail 
rotor: Figure 11 shows the relations between a 
sensor signal and its corresponding blade angle. In 
this case: 
 
 the damper and flap sensors are almost entirely 

sensitive to the lead-lag angle and flap angle and 
weakly sensitive to the other two blade motions 
values; 

 the signal of the linear sensor placed in the tail 
rotor servo-actuator is related not only to the 
pitch motion of the blade but it is coupled also 
with the other components. 

 
As seen for the main rotor, a sensitivity matrix can be 
built (Figure 12), that shows the relations of the 
transducers with the blade motions. 
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Figure 11 Tail rotor – kinematical couplings 
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Figure 12 Tail rotor – sensitivity matrix 

 
It must be noticed that the solver is able to keep into 
account of all these couplings, without affecting the 
accuracy of the solution. 
 
For what concerns the noise sensitivity evaluation, 
the test has been carried out in a similar way, with 
1000 sets of three angles (lead-lag, flap, and pitch) 
changing in their ranges of variation in a sinusoidal 
way. 
The noise introduced is a normal distribution with null 
mean value and a standard deviation equal to 0.5 
mm for the linear sensors and 0.5° for the angular 
sensors. 
 
For the main rotor the results are shown in Figure 
13: the lines represent the imposed motions and the 
dots the computed angles when the sensors are 
affected by the known noise. 
 
Then the amplitude of the imposed sensor noise and 
the amplitude of the error are reported in terms of 
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standard deviation (Table 1) and maximum value 
(Table 2). 
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Figure 13 Main rotor (noise sensitivity) 

 

Table 1 Main rotor – input/output errors (standard 
deviation) 

SENSOR STD ANGLE STD 

DAMPER 0.4956 mm LAG 0.1783 ° 

FLAP SENSOR 0.5131 ° FLAP 0.4059 ° 

PITCH SENSOR 0.5154 ° PITCH 0.3499 ° 
 

Table 2 Main rotor – input/output errors (maximum 
value) 

SENSOR MAX ANGLE MAX 

DAMPER 1.5434 mm LAG 0.6011 ° 

FLAP SENSOR 1.7876 ° FLAP 1.3314 ° 

PITCH SENSOR 1.8994 ° PITCH 1.3395 ° 
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Figure 14 Tail rotor (noise sensitivity) 

 

For the tail rotor, the results are shown in Figure 14: 
the lines represent the imposed motions and the dots 
the noisy computed angles. 
 
The amplitude of the imposed sensor noise and the 
amplitude of the error are listed in Table 3 and Table 
4. 
 

Table 3 Tail rotor – input/output errors (standard 
deviation) 

SENSOR STD ANGLE STD 

DAMPER 0.5236 mm LAG 0.2671 ° 

FLAP SENSOR 0.5054 ° FLAP 0.2459 ° 

SERVO 0.5039 mm PITCH 0.3793 ° 
 

Table 4 Tail rotor – input/output errors (maximum 
value) 

SENSOR MAX ANGLE MAX 

DAMPER 1.7766 mm LAG 0.8729 ° 

FLAP SENSOR 2.1075 ° FLAP 0.9622 ° 

SERVO 1.9293 mm PITCH 1.4949 ° 
 
For both the tail and main rotor, it can be stated that 
the configurations analysed are not too sensitive to 
the noise introduced by sensors. 
 

Validation 
 
A validation of this method has been investigated 
during some flights carried out with an instrumented 
helicopter. The outputs of the algorithm (i.e. the 
blade angles) have been related with appropriate 
parameters to provide some trends that can be 
compared with the expected ones. 
Only steady-state conditions have been considered. 
 
Collective static pitch angle (θ  0) 
 
Both for the main and the tail rotor the average pitch 
angle can be related with the collective pitch 
imposed by the pilot, in terms of collective stick 
position (for the main rotor) and pedal input (for the 
tail rotor). A significant contribution to the value of θ0 
is provided by the average flap angle β0, by means of 
the δ3 coupling. 
 
As for the main rotor, it can be written: 
 

300 tanδβϑϑ −= COLL  
 
where θCOLL is the collective stick position pitch 
angle.  
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Figure 15 compares the experimental data points 
(blue circles) with the expected trend. θ0 and β0 have 
been evaluated by the algorithm and θCOLL comes 
directly from the instrumentation of the prototype 
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Figure 15 Average main rotor pitch angle versus 
collective stick position 

 
The green dash line represents the analytical 
prediction without considering the δ3 contribution. As 
can be seen, it plays an important role in a correct 
predicting of the actual static (collective) pitch angle. 
 
As for the tail rotor, the following similar relation can 
be found: 
 

300 tanδβϑϑ −= PED  
 
where θPED is the pedal pitch angle. 
Figure 16 shows the predicted curves with (red) or 
without (green) considering the δ3 contribution and 
the experimental one (blue circles). 
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Figure 16 Average tail rotor pitch angle versus pedal 
position 

Also in this case the δ3 coupling helps to provide a 
more accurate estimation of the collective pitch 
angle, even if its contribution is smaller, because of 
the smaller values of cone angle with respect to the 
main rotor. 
 
Dynamic pitch angle at 1REV  (θ1REV). 
 
The 1REV oscillating pitch angle is strictly related to a 
cyclic stick input (θCYCL) and to the 1REV flap angle 
(β1REV), by means of the δ3 coupling. 
 
As for the main rotor, both the contributions exist, 
but, since the greatest one comes from the cyclic 
control input, the δ3 coupling is not considered, 
leading to: 
 

CYCLREV ϑϑ =1  
 
where θCYCL is the total cyclic input, due to both the 
lateral and longitudinal input. 
Figure 17 shows the cross-plot of these entities: it 
can be seen that there is a linear trend as expected, 
but there is also some deviations that can be 
attributed to the δ3 effect not considered. 
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Figure 17 1rev dynamic main rotor pitch angle 
versus total cyclic stick position 

 
As for the tail rotor, the problem is simpler, because 
of the absence of a cyclic control input, leading to the 
following relation: 
 

311 tanδβϑ REVREV =  
 
Figure 18 shows the cross-plot of these entities, as 
obtained by the flight data. 
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Figure 18 1rev tail rotor pitch angle versus 1rev 
alternate tail rotor flap angle 

 
The slope of this curve is found to be very close to 
the tangent of δ3, as expected by analysis. 
 
Static lead-lag angle (ζ0). 
 
The mean torque TQ0 can be assumed to be 
proportional to the mean lead-lag angle, according to 
the following relation: 
 

( ) 0
2

0 ζζ
ζ ⋅+Ω= KSeTQ BB  

 
where: 
 eB is the hinge offset; 
 SB

ζ  is the blade lag static moment referred to the 
hub; 

 Ω is the rotor speed; 
 Kζ is the lag stiffness due to the elastomeric 

bearing cocking spring rate. 
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Figure 19 Average main rotor mast torque versus 
average main rotor lead-lag angle 
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Figure 20 Average tail rotor mast torque versus 
average tail rotor lead-lag angle 

 
The terms in the bracket can be evaluated in order to 
provide an analytical estimation of the slope of the 
line. 
The equation is valid for the main rotor (Figure 19) 
and the tail rotor (Figure 20) and the experimental 
slopes are close to the analytical ones. 
 
Dynamic flap angle at 1REV  (β1REV) 
 
The 1REV main rotor mast control moment can be 
assumed to be proportional to the 1REV flap angle 
according to the relation: 
 

( ) REVBB
Bc

REV KSe
N

M 1
2

1 2
ββ

β ⋅+Ω=  

 
where: 
 eB is the hinge offset; 
 SB

β  is the blade flap static moment referred to 
the hub; 

 Ω is the rotor speed; 
 Kβ is the elastomeric bearing cocking spring rate. 

 
The term in the bracket, representing the slope of the 
line, can be evaluated and compared with the one 
obtained by flight data. 
 
The equation is valid for both the rotors (Figure 21 
and Figure 22): it can be seen that the experimental 
slopes are quite close to the estimated ones. 
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Figure 21 1REV main rotor mast control moment 
versus 1REV main rotor flap angle 
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Figure 22 1REV alternate tail rotor mast control 
moment versus 1REV alternate tail rotor flap angle 

 
Conclusions 

 
A kinematical method to compute the lead-lag, flap 
and pitch angles of rotor blades has been presented. 
It is based on the installation of a proper set of 
displacement transducers between the hub and the 
blade. The measure of these sensors are processed 
by a numerical algorithm to extract the desired blade 
angles. 
The number of sensors can be minimized by making 
use of already installed instrumentation. 
The main hypothesis underlying the method are: 
 the blade root is considered as a rigid body 

connected to the hub by means of a spherical 
hinge; 

 the centrifugal force acting on the elastomeric 
bearing and the tension link produces only an 
axial deformation of these items; 

 the kinematical constraint equation includes all 
the non linear effects associated to large 
rotations. 

The mathematical algorithm for solving the non-
linear system has been investigated, in order to 
show that the solution can always be univocally 
found and that the noise introduced by sensors is not 
amplified. 
A validation of the results can be achieved by 
correlating the prototype blade angles with other 
parameters normally recorded during flights. 
These relations can be used to provide an estimation 
of blade angles even when the sensors are not 
installed. 
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