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Abstract

The objective of the paper is to develop a vibration-based automated procedure dealing with early detection
of mechanical degradation of helicopter drive train components using Health and Usage Monitoring Systems
(HUMS) data. An anomaly-detection method devoted to the quantification of the degree of deviation of the
mechanical state of a component from its nominal condition is developed. Such a method introduces an
Anomaly Score (AS) as the combination of a set of statistical features correlated with specific damages, also
known as Condition Indicators (CIs), thus implicitly including the operational variability in the model through the
CI correlation. The problem of fault detection is thus recast as a one-class classification problem in the space
spanned by a set of CI, with the aim of a global differentiation between normal (healthy) and anomalous (faulty)
observations. In this paper, a procedure based on an efficient one-class classification method, not requiring
any assumption on the data distribution, is used. The core of such an approach is the Support Vector Data
Description (SVDD), that allows for obtaining good data descriptions without the need of a significant amount
of statistical data. Several analyses are carried out in order to validate the proposed procedure, using flight
vibration data collected from a H 135 (formerly known as EC 135) servicing helicopter, for which micro-pitting
damage on a gear was detected by HUMS and assessed through visual inspection. The capability of the
proposed approach of providing better trade-off between false alarms rate and missed detection rates with
respect to individual CI and to the ASs obtained assuming Gaussian-distributed CI has been analysed.

1. INTRODUCTION

The problem of early fault detection is crucial in heli-
copter maintenance strategy. Early stage, undetected
damage affecting critical sub-systems can progress-
ively increase causing the system to fail. In the best
case, such a scenario could result in increased op-
erating costs for the machine owing to the required
grounding time, maintenance and part replacement,
as well as it could lead to dangerous accidents in some
cases. The drive train sub-system is responsible for
transferring power from the engines to the rotors, and
represents a critical sub-system for the machine due
to non-redundant load paths and the high variability
of the dynamic loads acting on the components ([1]).
As to ensure aircraft airworthiness, the system needs
to be maintained following a prescribed preventive
maintenance program, resulting in a burden to oper-
ating costs and aircraft availability. Therefore, Health
and Usage Monitoring Systems (HUMS), defined as
equipment/techniques/procedures by which selected
incipient failure or degradation can be determined in

[2], were introduced in the last decades in helicopter
industry as a mean of increasing safety and reducing
maintenance costs by enabling Condition Based Main-
tenance (CBM) ([3, 4]). Because damages are not
directly observable, it is necessary to measure quantit-
ies which are affected by fault development. Mechan-
ical degradation affects the vibration signature emitted
from drive train rotating components. Moreover, tech-
nologies for measuring vibration signals are readily
available. Therefore, it is common in the helicopter
industry to equip rotating parts in the drive train with
sensitive sensors (typically accelerometers) able of
recording dynamic oscillation. The HUMS includes
a transmission monitoring function which uses three
types of data ([5]): accelerometer and tachometer
signals, as well as contextual parameters such as
airspeed, temperature and engine torque. Accelero-
meters are typically mounted on gearboxes and shaft
bearings, tachometers on rotor shafts. The contex-
tual parameters, when available, usually come from
sensors which are part of other avionic/navigation sys-
tems than HUMS. Within the HUMS, a diagnosis logic
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Figure 1: High level overview of HUMS diagnosis process.

is implemented in order to process a set of sensor
signals by which the mechanical state of underlying
assets is inferred. Figure 1 represents an overview of
the diagnosis process. Sensor data are in a first step
corrected for the contextual parameters. Invalid data,
like noisy acquisitions or data recorded in unfavourable
conditions (e.g. during run-ups or other non-stationary
conditions of the machine) are rejected at this stage
(contextual correction in figure 1. Features extraction
consists of converting the raw sensor input in a metrics
which is more informative about the state of the system
([6]), such features are commonly referred to as Con-
dition Indicators (CI). Finally, CI are interpreted as an
input to a classifier, with the aim of producing the most
likely decision about the state of the monitored com-
ponents. The inference may be as simple as deciding
if a fault is present (fault detection), up to providing
prognostic information on the remaining useful life for
a given component. Such information is then passed
to the overlying decision logic, supporting the main-
tenance decision process. Traditional HUMS ([7]) are
based on univariate monitoring of each CI. The values
of each CI are compared to an individual threshold,
computed from fleet historical data. An alert is gen-
erated whenever any of the CI exceeds its threshold.
However, the high variability of aerodynamic loads,
transmission loads and operating conditions affect the
vibration signature, resulting in high scattering of the
CI values ([8, 9]). Therefore, despite the efforts in
developing damage-sensitive features using advanced
signal processing techniques, state-of-the-art HUMS
are prone to increased false alarms ([10]). A novel
approach to the CI analysis was developed in a five-
year research program involving GE aviation ([10]),
where multiple CI from fleet data are combined in a
single Anomaly Score (AS). Such an AS represents
the degree of deviation of an acquisition from the nom-
inal state, defined using a Gaussian Mixture Models
(GMM) based on the entire fleet multivariate data as a
reference. Results revealed that this feature-level data

fusion was capable of enhancing fault detection per-
formance of classical HUMS analysis methods, neither
requiring restrictions on operating conditions nor ex-
plicit modelling of their effects on the CI values. Con-
temporary, the research at Airbus Helicopters (AH)
resulted in a different strategy, adopted in [11], where
CI are combined in a so-called Health Indicator (HI)
using the definition of Mahalanobis Distance. The HI
are defined based on a set of CI for each component,
and the nominal state definition relies on few acquisi-
tions following a maintenance action. Differently from
[10], this method aims to model a baseline for each
individual component, independently from fleet data,
thus preventing the between-helicopters variability due
to different configurations and installation tolerances
([12]) to mask local trends in the CI. However, an in-
trinsic limitation of the methodology is in the obvious
impossibility of detecting manufacturing defects. Be-
sides, Gaussian assumption of the CI distribution is
required. Actually, the fault detection problem can
be considered as a one-class classification problem,
with the task of separating the normal (healthy) data
samples from the faulty ones. Support Vector De-
scription (SVDD) is an unsupervised machine learn-
ing method specifically developed for solving the one-
class classification problem by Tax and Duin ([13]).
SVDD solves the problem of data description given a
set of training samples, from which the boundaries of
the target distribution are learnt. This approach has
been successfully employed in image classification
problems, one-class pattern recognition, damage de-
tection, batch process monitoring, etc. (e.g. [14–17]).
Examples of the application of SVDD in machine condi-
tion monitoring are found in [18–21]. In this paper, fault
detection using HUMS data is recast as an anomaly
detection problem in the space spanned by multiple CI
as in [10]. In order to account for between-helicopters
variability in the same fleet, individual component mod-
els are proposed as in [11]. The operational variability
is implicitly accounted for in the model through the



correlation induced within CI. Furthermore, since CI
were preliminarily observed to be non-linearly correl-
ated, with non-normal marginal distributions, a SVDD
model is used for data description. The SVDD output
is used as an AS, quantifying the degree of abnor-
mality of an observation from the nominal distribution.
The remainder of this paper is organised as follows.
First, a theoretical background is given in Section 2.
Extraction of CI from vibration data is introduced, then
the basic SVDD model is presented and the proposed
methodology described. In Section 3, the proposed
methodology is evaluated on vibration data from a ser-
vicing H 135 (formerly known as EC 135) with a devel-
oping micro-pitting damage. Such data are collected in
real operating conditions, extracted CI present there-
fore the associated scattering. It is shown that the
developed algorithm can be applied in an operational
framework, producing an AS which increases the sep-
aration between normal and faulty data with respect
to individual CI and to a multivariate model based on
Gaussian assumption. Finally, conclusions are made
in Section 4.

2. THEORETICAL BACKGROUND

2.1. Extraction of Condition Indicators
from vibration data

The general problem of CI extraction from accelero-
meters response in complex machinery is briefly in-
troduced using a linear model, then, considering the
specific case of gear pitting, the procedure adopted
for defining related CI is described. Among the many
techniques proposed in literature for gear local fault
detection (see, e.g. [22–27], statistical features ex-
traction based on the so-called synchronous average
signal is considered in this work for its simplicity and
proved effectiveness. Moreover, the limited sampling
frequency of available sensors represents a constraint
to the application of more advanced techniques like
the ones based on the Spectral Kurtosis (SK) filtering
procedure developed by Antoni et al. ([28, 29]), aimed
to exploit system resonant bands as to amplify the
early stage, impulsive fault signature.

2.1.1 Model of accelerometer response

The vibration response of the structural components
to the operational excitation is assumed to be linear
in the considered frequency range. The linear model
for the response xj at position j in a mechanical envir-
onment characterised by multiple vibration sources is

then given as ([30]):

(1)

xj(t, θ) =
NF

∑
i=1

hF
ij(t, θ) ∗ Fi(t, θ)+

+
NI

∑
i=1

hI
ij(t, θ) ∗ Ii(t, θ)+

+ hS
j (t, θ) ∗m(t, θ) + nj(t, θ),

where ∗ denotes the convolution operation, t and θ re-
spectively the short time-scale associated with meas-
urements and the long time-scale characteristic of
the monitoring process. In the following, the depend-
ency of the vibration signal over θ is dropped from
the notation. The response is then given as the sum
of NF fault-related signals Fi(t) and NI interfering
machinery signals Ii(t) respectively convolved with
the impulse response functions hF

ij(t) and hI
ij(t). The

term hS
j (t) ∗ m(t) explicitly introduces in the model

the modal response at location j due to all remain-
ing excitation sources from normal machine operation
and imperfections. Finally, nj(t) models the ambient
and sensor noise. From equation (1), the measured
acceleration at the transducer location is the convolut-
ive mixture of multiple sources. The identification of
fault-related signatures requires isolating them from
the rest of the signal, filtering out those interfering
components related to the functioning of the healthy
state machinery in its actual operating environment.
Therefore, an understanding of the properties of fault
or normal vibration is mandatory ([31]). Besides, the
model of equation (1) includes the dependency of the
measured vibration on the mode shapes of the system
(and consequently the sensor position as well), the
operating state of the machine and the transmission
paths from the sources to the accelerometer.

2.1.2 Condition Indicators extraction based on
the shaft-synchronous signal

The gear motion error signal, according to [32] can
be defined as the difference between the gear’s real
motion and the ideal uniform motion. For a pair of
meshing gears running at constant speed, the single
gear motion signal can be deduced by ideal tangential
displacement xi(t) at the pitch circle:

(2) xi(t) = x0 + v0t,

with x0 and v0 initial displacement at the reference
time t equal to zero and constant pitch line velocity.
Considering the motion error, equation (2) becomes:

(3) x(t) = x0 + v0t + xeg(t) + xes(t),



where xeg and xes are given as infinite cosine series
with fundamental period equal respectively to the gear
mesh frequency fg and the shaft frequency fs:

xeg(t) =
∞

∑
k=0

Akcos(2πk fgt + αk)(4)

xes(t) =
∞

∑
k=0,k 6=Z

Bkcos(2πk fst + βk).(5)

The coefficients Ak,Bk,αk,βk in equations (4) and (5)
are amplitudes and phases of the k-th harmonic,
whereas Z is the number of teeth of the considered
gear (recall that the gear mesh frequency fg is defined
as the product of Z by the shaft rotating frequency fs).
Taking the second time-derivative of equation (3) gives
the expression for the gear motion error acceleration
signal:

(6)

a(t) =−
∞

∑
k=0

(2πk fg)
2 Akcos(2πk fgt + αk)

−
∞

∑
k=0,k 6=Z

(2πk fs)
2Bkcos(2πk fst + βk).

Under the assumption of linear behaviour of the accel-
erometer response model (section 2.1.1), the meas-
ured acceleration signal contains the same harmonics
of equation (6). Hence, a common technique for isol-
ating the vibration signature related to a specific gear,
the time-domain synchronous averaging (TSA) ([33,
34]) is used to identify such harmonic components.In
order to prevent from jittering effects due to speed
fluctuations in normal operating conditions, the meas-
ured signal is resampled to the angular domain before
averaging (some authors refer to the TSA in angular
domain as angular-domain synchronous averaging,
see e.g. [23]). Speed fluctuations are implicitly as-
sumed as small as not to provoke significant changes
in the transfer functions of the system. After the ex-
traction of the shaft-synchronous signal, the following
CI are considered for fault detection:

1. Root Mean Square energy of the discrete signal
(RMS)

(7) RMS =
1

Ns − 1

Ns

∑
k=1

(xTSA(k∆φ))− x̄TSA)
2

where k indicates the sample number, ∆φ the
samples spacing in the angular domain, Ns the
number of samples and x̄TSA the mean value
of the shaft-synchronous signal samples. The
RMS, or variance of the signal, is a measure
of the overall energy level of the signal. It is
therefore expected to increase due to the energy

associated with local impacts caused by local
faults in the gear.

2. Kurtosis of the signal (KRT)

(8) KRT =

Ns
∑

k=1
(xTSA(k∆φ)− x̄TSA)

4

(Ns− 1)RMS2 ,

The kurtosis of a signal is the scaled fourth stat-
istical moment and increases with increased sig-
nal impulsiveness. The kurtosis is expected to
increase due to the fault, since the impacts from
the pitted teeth are of impulsive nature.

Considering such indicators provides a set of two CI
deemed able of separating the pitted gear vibration
from the normal gear vibration. However, if different
failure modes are taken into account, more indicators
can be considered ([35]). Nevertheless, considering a
set of indicators able of reacting to the fault is sufficient
for the purpose of this work.

2.2. Support Vector Data Description

SVDD is a data domain description method inspired by
the support vector machines ([36–38]). The basic idea
is to determine, from a small set of training samples,
the minimal volume hypersphere enclosing most of
the target data. New instances outside the boundar-
ies of the describing hypersphere are then classified
as outliers. SVDD is suitable for the problem of fault
detection when fault data are not available, since it
only requires normal (target) objects in order to find a
description of the normal state. The problem can be
cast as a standard quadratic optimization with unique
optimal solution ([39]), resulting in high computational
efficiency for the method. In the following, the SVDD
method is briefly introduced. One can refer to [13] for
theoretical details. Assume a training set composed
of M objects {xi, i = 1, 2, ..., M} which are drawn from
the target distribution. Being a the center of the hy-
persphere and R its radius, the cost function to be
minimised reads:

(9) F(R, a) = R2,

subject to the constraints:

(10) ||xi − a||2 ≤ R2, ∀i.

Cost function (9) is modified as to allow the possibil-
ity to reject some training points from the description,
introducing slack variables ξi ≥ 0 such that large dis-



tances from the center a are penalised:

(11) F(R, a) = R2 + C ∑
i

ξi.

Constraints (10) hence become:

(12) ||xi − a||2 ≤ R2 + ξi, ξi ≥ 0, ∀i.

The parameter C controls here the trade-off between
the volume of the hypersphere and the errors. In-
corporating the constraints (12) into equation (11) by
using Lagrange multipliers αi ≥ 0 and γi ≥ 0 leads to:

(13)

L(R, a,αi, γi, ξi) =

= R2 + C ∑
i

ξi −∑
i

αi{R2+

+ ξi − [‖xi‖2 − 2(a · xi)+

+ ‖a‖2]} −∑
i

γiξi.

In (13), L should be minimised with respect to R, a, ξi
and maximised with respect to the Lagrange multipli-
ers αi and γi. Setting to zero the partial derivatives
gives the constraints:

∂L
∂R

= 0 : ∑
i

αi = 1(14)

∂L
∂a

= 0 : a = ∑
i

αixi(15)

∂L
∂ξi

= 0 : C− αi − γi = 0.(16)

From (16) and from the Lagrange multipliers being
non-negative, the γi can be removed by imposing:

(17) 0 ≤ αi ≤ C.

Substituting back (14)–(16) into (13) results in:

(18) L = ∑
i

αi(xi · xi)−∑
i,j

αiαj(xi · xj),

subject to the constraints (17). Now when a training
object xi strictly satisfies the inequality in (12), the
constraint is satisfied and the corresponding αi is zero.
Differently, when (12) holds with equality, the constraint
has to be enforced (αi > 0). Hence:

||xi − a||2 < R2 → αi = 0, γi = 0(19)

||xi − a||2 = R2 → 0 < αi < C, γi = 0(20)

||xi − a||2 > R2 → αi = C, γi > 0.(21)

Since from equation (15), the center of the sphere is a
linear combination of the objects, only training objects

for which αi > 0 are needed for the description and
they are therefore named support vectors (SV’s) of
the description. Besides, SV’s lie on the boundary of
the hypersphere, hence R2 can be obtained as the
distance from any SV to the center of the hypersphere
a. The distance of any new object z from the center of
the hypersphere is then computed as:

(22)

∆(z) = ‖z− a‖2 =

= (z · z)− 2 ∑
i

αi(z · xi)+

+ ∑
i,j

αiαj(xi · xj).

In order to allow for more flexible boundaries (i.e. when
data do not follow a spherical distribution), the inner
product (xi · xj) can be replaced by a kernel function
K(xi, xj) satisfying Mercer’s theorem ([16]). In this way,
the input space is implicitly mapped to some other
high-dimensional feature space, where the data are
better described from the hypersphere. Equation (22)
reads then in the new feature space:

(23)

∆(z) = K(z, z)− 2 ∑
i

αiK(z, xi)

+ ∑
i,j

αiαjK(xi, xj).

A common choice for the kernel function is the Gaus-
sian kernel, defined as:

(24) K(xi, xj) = exp

(
−‖xi − xj‖2

σ2

)
,

where σ is a width parameter. This kernel is independ-
ent of the position of the dataset with respect to the
origin, i.e. only the distance between objects matters.
Objects are mapped to unit norm vectors, so that only
the angles between them count ([13]). In the standard
SVDD setting, objects are rejected and flagged as out-
liers when they lie outside the hypersphere (∆ > R2).
Optimal selection of the model parameters (C and σ)
is still an open issue in data description problems. In
this article, the approach proposed by Tax in [40] using
grid-search was taken.

2.3. Proposed methodology

A variation in the operating conditions of the machine
affects the CI values (RMS and Kurtosis in the present
case) through the variation of the measured response
(1). Hence, CI values are correlated to the operat-
ing condition parameters. Studies on the correlation
among different CI and with between CI and operat-
ing conditions are reported in [9]. There is evidence
for strongly non-linear correlation. Ideally, such a cor-



relation would change with mechanical degradation
progressively affecting the measured response sig-
nal. Therefore, it is proposed to extend the idea de-
scribed in [11] of fusing multiple CI in an AS (therein
referred to as Health Indicator), keeping into account
the non-linearities in the correlation between indicat-
ors induced from the underlying unknown operating
variables. The idea behind the AS is then to exploit the
correlation information in order to obtain better separa-
tion between the healthy state and the faulty state of
a given component, under the assumption that given
a sufficient amount of observations, vibration data will
be acquired under similar conditions for a helicopter
operating similar mission profiles. In order to hold the
non-linearities in the CI correlation model, an SVDD
for the healthy distribution is proposed instead of a
Gaussian one. The metric for the AS was selected
to be the distance of an observation from the center
of the hyper-sphere in the kernel space, according to
equation (23). The metric of the AS for the Gaussian
model was computed as the squared Mahalanobis
Distance ([41]) of an observation to the learnt Gaus-
sian model, according to [11]. The algorithm involves
a learning phase, in which models are trained using
Ntrain observations, and an evaluation phase in which
new observations are compared to the model and an
AS obtained. The learning phase can be triggered
from the operator after any relevant maintenance ac-
tion, manually entered or automatically detected with
methods such the one mentioned, e.g. in [11]. The
issue of setting a threshold on the AS values in order
to decide whether an observation is normal or not is
not addressed in this work, since it involves several ad-
ditional steps which are part of the overlying logic (see
figure 1). Seemingly, Ntrain needs to be determined
according to the maintenance policy and is considered
given as a constraint in this work.

3. RESULTS

3.1. Preliminary data characterization

Flight data have been recorded from two piezoelectric
accelerometers mounted on the gearbox case of a
H 135 helicopter. The monitoring system with which
the considered helicopter was equipped recorded the
output acceleration from seven sensors at different
locations. Three of them are dedicated to monitoring
the cabin vibration, one to the tail drive shaft, one to
the tail gearbox and the latter two to the main gearbox.
A sketch of the main gearbox is shown in figure 2. The
two input drive shafts rotate at a speed of about 98.3Hz
(≈5900rpm) and transmit power from the engines to
the main gearbox. Shafts speed ranges from about
6.5Hz at the main hub shaft to 210Hz at the fan drive

shaft at 100% nominal engine speed. The main gear-
box accelerometers are located on the right and left
side of the casing, in proximity of the input drive shafts
and measure the radial acceleration with a sampling
frequency of 7000Hz. For monitoring purposes, the
system periodically acquires 2.85s of vibration data,
corresponding to 20000 stored samples per acquisi-
tion per accelerometer. The system starts recording
only when flight conditions are stable (contextual cor-
rection in figure 1), as to prevent from acquiring highly
non-stationary vibration data (e.g. during start-up),
this restricts the space of possible occurring operat-
ing conditions during a record. A first effect of the
constraint is reducing the number of acquisitions in
a given period, the second is that of imposing a first
limitation to the CI values variability due to the differ-
ent operating conditions. Additionally, due to memory
constraints from the acquisition system, a maximum
number of five files is stored during each flight session.
Together with vibration, a magnetic pickup installed on
the main rotor swash plate and one on the tail rotor
store a synchronizing signal, allowing for the establish-
ment of angle/time relationships used for resampling
of the TSA signal. The mechanical complexity of the
system and the flight environment results in multiple
vibration sources, mainly consisting of main rotor and
blades vibration, wind/structure interactions and other
aerodynamic effects and vibration directly related to
the rotating components, like unbalanced/misaligned
shafts or meshing gears. The mixture of all these
sources is transmitted through the structure to the ac-
celerometers according to model (1), giving rise to a
profuse spectrum in which characteristic frequencies
are hardly identifiable. A typical measured spectrum
in a fault-free condition is shown in figure 3. The peak
of the response at about 2260Hz is the meshing fre-
quency of the input drive gear and the intermediate
shaft output pinion. Such a noisy spectrum justifies the
introduction of signal processing techniques, based on
a first-principle understanding of the effect that the de-
veloping damage has on the measured vibration signal
(section 2.1.2). The data used for this analysis were
acquired during almost 22 months of operating life of
the helicopter (≈2130 Flight Hours). In this time frame,
micro-pitting degradation occurred on the right input
drive shaft’s pinion. Ground truth is available from two
inspections carried on after 1600 FH and 2130 FH.
After the first inspection, the measured damaged area
was about 16mm2 and was judged safe for the oper-
ations of the gears. The damaged area at the time
of the second inspection was about 34mm2 and the
asset was then replaced. The degradation is visible in
the form of gray staining on the tooth surface (figure 4).
The damage started developing between 1000 FH and



the date of first assessment. However, no feedback on
direct inspections of the component is available before
the 1600 FH inspection.

Figure 2: H 135 main gearbox.

Figure 3: Spectrum of a 2.85s fault-free vibration signal re-
corded in flight by one of the monitoring system
main gearbox accelerometer with a sampling fre-
quency of 7000Hz (estimated using Hanning win-
dow and 16 non-overlapping averages).

3.2. Fault detection performance

For verification purposes, and with reference to the pre-
viously reported maintenance inspections, the flight
data were divided in the following sequential blocks:

1. Healthy state (≈1000 FH);

2. Early degradation (unknown state) (≈600 FH);

3. Known degradation (faulty state) (≈530 FH).

The proposed methodology, based on AS generation
through SVDD data fusion is assessed by comparing
its performance in detecting the early degradation with
respect to the univariate analysis of the CI proposed
in section 2.1 and with respect to the method based
on the Gaussian model proposed in [11]. First, the
CI computed over the entire data history are presen-
ted. Next, the Gaussian and the proposed method

are applied using Ntrain = 80 acquisitions for training
and the remaining for evaluation of the AS. Since
the goodness of the obtained multivariate model de-
pends on some extent on the representativeness of
the training set, the models were trained picking all
the possible training sets from the healthy data. In
this way, robustness to poor representative training
sets is accounted for. Classification performance can
be measured independently from threshold setting
by introducing the receiving operating characteristic
(ROC) curves. Such curves represent the fraction
of target object accepted by the model (i.e. healthy
observations classified as healthy) against the fraction
of outliers accepted (i.e. faulty observations classified
as healthy). The area under the ROC curve (AUC)
gives a scalar measure of the achieved separability
between states. Computing the classification perform-
ances requires the definition of a healthy and a faulty
dataset. The healthy dataset was defined including
the first 1000 FH, whereas four definitions are intro-
duced for the faulty state: early stage degradation
(from FH 1150); middle stage degradation (from FH
1300); advanced stage degradation (from FH 1450)
and assessed degradation (from FH 1600). The mod-
els were evaluated in the four cases, which allows for
comparing their efficiency in responding early to the
fault development in terms of AUC, without introducing
model-specific thresholds or novel key performance
indexes. The CI extracted from the vibration data were
computed as described in section 2.1. Figure 5 shows
the values of the RMS and Kurtosis indicators com-
puted from the shaft-synchronous signal. The dates
in which damage was assessed are indicated with
black vertical lines. Although there is a clear upward
trend correlated with the degradation, the values are
very scattered and present a complex distribution. A
visualization of the CI distribution in the healthy state
is shown in figure 6, where the quantiles of the CI
distributions are plotted against the quantiles of the
normal distribution. It can be seen that both the CI dis-
tributions do not match the Gaussian (dashed line in
the figure). In figure 7, scatter plots of the CI centred in
the feature space normalized by their mean are shown.
The contours of example data descriptions obtained
using the Gaussian model and the SVDD model are
plotted for varying AS values. It is evident that the
SVDD model produces a tighter description, which
results in a better ability of discriminating between
those data points belonging to the healthy distribution
all the others not belonging to it. The ROC curves
in the four degradation cases mentioned above are
shown in figure 8. The curves for the multivariate
models are obtained as mean ROC curves over all
the possible 4680 ROC curves computed on training



(a) (b)

Figure 4: Gray staining on the right input drive shaft’s pinion. a) Component at the time of first inspection; b) component at
the time of second inspection.

(a) (b)

Figure 5: Time history of the condition indicators (time axis is translated such that the first acquisition coincides with the
reference date of 01 Jan 00). Black vertical lines: first inspection and second inspection. a) RMS CI; b) Kurtosis
CI.



(a) (b)

Figure 6: Normality test of each CI visualized through quantile-quantile plots. a) RMS CI; b) Kurtosis CI.

(a) (b)

Figure 7: Scatter plots of the CI in the normalized feature space and contours representing varying AS. a) Gaussian model
contours; b) SVDD model contours.



(a) (b)

(c) (d)

Figure 8: ROC curves. SVDD and Gaussian model average performance over 4680 training sets compared with univariate
CI performance in the four degradation stages. a) Early stage degradation; b) middle stage degradation; c)
advanced stage degradation and d) minimum assessed micro-pitting of 16mm2
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Figure 9: Boxplot of AUC values obtained in the four degradation cases for the Gaussian and SVDD models over the 4680
evaluations, compared to the AUC of the best performing CI (black lines in the plot).
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sets obtained drawing a sequence of Ntrain acquisi-
tions from the healthy distribution. The mean AUC,
computed from the mean ROC curve, is reported
in the legend along with the AUC values standard
deviation in squared brackets. The indicators (both
from the multivariate and from the univariate models)
gain a better discriminating ability with the damage
progression. This is not surprising, since the CI are
designed for being correlated with fault evolution and
hence their value increase with the defect growth.
However, both the multivariate indicators performs
better in general. Moreover, they offer the advant-
age of resuming the information from multiple CI in
one single AS, thus enabling simpler decision. For
early and middle stage damage (figures 8a and 8b),
Kurtosis indicator performs better than all the other in-
dicators in the low target acceptance rate region. This
means that for threshold settings generating very high
false alarm rates it has higher probability of detecting
anomalous observations. RMS performs worst at
almost every acceptance rate. The AS computed from
SVDD model is the one granting highest probabilities
of detection at a given probability of false alarm in
the early, middle and advanced degradation stages,
whereas for more several degradation (first inspection
onward), the Gaussian model performs slightly better
on average, since the healthy and faulty distributions
becomes very well separated in the features space.
Except for the last stage, the SVDD model is more
robust to the variability of the training set with respect
to the Gaussian model, as observed from the stand-
ard deviation values. In order to better visualize the
influence of different training sets, a boxplot of the
AUC values in the four stages is shown in figure 9.
Training sets which are more representatives of the
real multivariate distribution of the indicators leads
in general to higher AUC scores for the multivariate
models. The horizontal black lines in the plot represent
the AUC computed for the best-performing univariate
CI. In general, the SVDD model results in higher AUC
than the univariate models for almost all the possible
training sets, yielding an AUC relatively close to that
of the univariate CI in the few cases in which they
perform better. The Gaussian model suffers more
from the training set representativeness in the first
three considered degradation stages. However, in the
majority of the cases it yields better performance than
the univariate indicators, outperforming also the SVDD
model when considering the severe degradation case.
Tables 1 to 4 summarize the comparison between
SVDD AS and Gaussian AS for the four considered
degradation cases, by the mean of three parameters.
The first one is the average AUC gain (AAG), defined
as the difference between the mean AUC value ob-

tained over all the training sets and the best AUC
value from the univariate CI. The second parameter
is the failure rate (FR), defined as the count of the
cases in which the multivariate model performed worst
than the best univariate CI divided by the total number
of cases (4680). The third introduced parameter is
the worst AUC loss (WAL), defined as the difference
between the best AUC from the univariate CI and the
worst case AUC valued obtained for the AS. From the
tables, the AS from SVDD model outperform both the
AS from Gaussian model and the univariate CI for
early detection. Once the fault condition is sufficiently
developed, it seems that the Gaussian model performs
slightly better with respect to the SVDD, owing to the
increased topological separation between the cluster
of the anomalous points and that of the reference
distribution in the CI space. However, both the mul-
tivariate models consistently outperform the traditional
univariate CI analysis. These results translate into a
clearer ability of the AS of reacting to the faults with
respect to the CI, as shown in figure 10, where the
AS and CI trends are compared. Trend analysis of
the CI is a common practice in the industry. Clearly
considering the trend over more acquisitions helps to
average out the scattering of the CI. Nevertheless, it
comes at a price, since the need for more acquisitions
for making a decision translates in reduced reaction
time. Having indicators which are able of better separ-
ating faulty states from the healthy ones is therefore
preferable, since using the same number of points,
increased confidence in the decision can be obtained,
whatever the decision policy is. In figure 10, trends are
obtained using a moving average filter with a length
of 100 acquisitions. The black vertical lines indicate
the beginning of each of the four defined sequen-
tial degradation stages. It is observed that the AS
from the SVDD model is reacting quicker to the fault
initiation, resulting in improved fault detection ability.

Table 1: Comparison of AS and CI performance, early
stage degradation

Parameter Gaussian model SVDD model

AAG 0.0422 0.1174
FR 0.1558 0.0064
WAL 0.0515 0.0232

Table 2: Comparison of AS and CI performance, middle
stage degradation

Parameter Gaussian model SVDD model

AAG 0.0794 0.1184
FR 0.0058 0.0011
WAL 0.019 0.0056



Table 3: Comparison of AS and CI performance, advanced
stage degradation

Parameter Gaussian model SVDD model

AAG 0.0909 0.0973
FR 0 0.0011
WAL - 0.005

Table 4: Comparison of AS and CI performance, minimum
assessed micro-pitted area of 16mm2

Parameter Gaussian model SVDD model

AAG 0.1216 0.1131
FR 0 0
WAL - -

4. CONCLUSION

As a main result, this work showed the possibility of
obtaining improved information from Health and Usage
Monitoring Systems vibration data by fusing traditional
CI into single AS using data description models. Such
an improvement is achieved by considering the vari-
ability induced by the operating conditions of the heli-
copter on the CI values implicitly inside the AS models,
in the form of a correlation between multiple CI through
latent variables. The models are learnt from the ac-
quired data during a learning phase of the algorithm.
Therefore, a set of reference values are needed be-
fore the monitoring can be effectively enabled. Re-
markably, since operating conditions are treated as
latent variables, there is no need for direct measure-
ments of the flight parameters. In order to address the
limits of the original proposal based on a Gaussian
model, an SVDD model was introduced. The method
allowed to obtain an AS which improved the detection
of early stage degradation with respect to the AS ob-
tained from the Gaussian model and with respect to
traditional univariate CI. Moreover, only few training
acquisitions were sufficient for learning a proper data
description. The choice of the model parameters was
automatized, yielding good results for the considered
case. There is no warranty, in any case, that optimizing
on an artificially-generated outlier (faulty) data will res-
ult in good performance on the real outlier (faulty) data
distribution. The method assessment was performed
on comprehensive real operating vibration data. It was
shown that although the multivariate models depend
on some extent on the training set representativeness
of the true distribution, reasonably robust performance
improvements could be obtained over the univariate
CI. However, no general indication can be given on the

minimum number of the training acquisitions neces-
sary for an accurate description of a set of CI, which
greatly depends on the characteristics of the distribu-
tion. Future research for HUMS improvement should
be addressed to gaining a major understanding of the
modality through which vibration response signals are
affected from the various sources encountered in real
operations environment.
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