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Abstract: This paper describes a low cost approach to hmkedealth and usage monitor-
ing, which could potentially enable smaller sizewér cost, and older helicopters to have
similar HUMS (Health and Usage Monitoring Systerapéfits as to the larger more expan-
sive helicopters. The system prescribed is caBetartHUMS’, a miniature HUMS unit de-
veloped by the Defence Science and Technology Gsation (DSTO) of Australia in co-
operation with GPS Online Pty Ltd. The emphasithisf paper is not the hardware aspects of
the SmartHUMS unit, but instead on the developmoéatgorithms that can be utilised by the
SmartHUMS unit. The algorithms must be generimpde, and should not require a compli-
cated computational system, but at still maintaghtaccuracy of health and usage monitor-
ing. The algorithms developed in this researchrefiered as Detection Indices (DlI).

This paper demonstrates the DI capability usingelach top test rig driven by a two-stroke
model helicopter motor. Faults were purposelyoditiced to the rig during its operation.
Besides the bench top experiment a flight test ex@nt performed onboard a Hughes 300
helicopter was also conducted. The helicopter mxm@nt consisted of pilot induced manoeu-
vre effects. The results of the experiments aesgmted in this paper.

1 INTRODUCTION

Helicopters have a higher rate of mechanical failuccidents because they are more vulner-
able to catastrophic mechanical failures than finedg aircraft [1]. The accidents occur
simply because of the higher number of single Ipath critical parts within the rotor and
transmission systems and the reduced redundantynwitie helicopter design [2]. To de-
crease the instance rate, equipment capable dfedetaonitoring of different critical helicop-
ter functions are routinely fitted to medium-sizedd larger helicopters used by civil and
some military operators. The combination of thegeipment forms a system that is capable
of monitoring many different critical parts of alisepter. This system is usually referred to
as Health and Usage Monitoring System (HUMS). mtagor trigger for the development of
HUMS in the UK and Europe is largely due to the oramendation of the CAA-
commissioned HARP report in 1984, where the repaggested that HUMS could be retrofit-



ted onto existing rotorcraft and incorporated inéw helicopter types [3]. Between 1991 and
1997, CAA studies have shown HUMS were able to ipwarnings for 69% of the failure
types and successfully warned 60% of all the p@tytcatastrophic failure cases.

Currently, vibration health monitoring systems haeen made mandatory in the UK on large
helicopters certified or validated since certifioatrequirements were tightened by the CAA
after the HARP report. An additional airworthinedisective in 1999 also made vibration
health monitoring systems mandatory in the UK ateoltypes of helicopter carrying more
than 9 passengers [3]. The main reason why ombel&elicopters are being fitted with
HUMS is mainly due to the cost issue. Larger foglters generally cost a lot more, and to
make matter worse a capable HUMS usually cost quitsiderably. Most helicopter opera-
tors consider installing HUMS in their fleet onfythe system would provide significant eco-
nomic benefits that would outweigh the costs in #hert term. As majority benefits of
HUMS implementation is distributed over the remagniife of the aircraft, which is why
older types of helicopter are less likely to besidared for HUMS implementation.

Another reason why HUMS are rarely considered foalter helicopters is to do with its

physical size. In a small helicopter the payloaueahsion and weight are critical factors.
Unfortunately HUMS generally have noticeable sine aveight, as well as being generally
too expensive to be justified to be fitted in atfolan that might cost less. Therefore, this
paper introduces a possible solution, which wilbwal some of the HUMS benefits to be
achieved in small and medium sized helicopter. Sdiation is a low cost light weight minia-

ture ‘SmartHUMS’ unit combined with the proposeddljorithms.

The way the proposed DI algorithms work is thatimtythe monitoring process the DI will
continuously examine the vibration signal produbgca helicopter. If an adverse condition
develops DI will flag the event and only record thieration data corresponding to the event
for further analysis. The event recorded is naessarily fault induced. The event could just
be an abrupt control input by the pilot (i.e. aftrmanoeuvre). This is where the proposed
DI differs from conventional HUMS. While convential HUMS use algorithms that specifi-
cally look for individual faults (or faults in inddual gears, bearings, etc.), the DI techniques
looks for events in terms of changes in transfercfions. For example, a conventional
HUMS only detect a structural crack if an algorittondetect cracks is included, while Smar-
tHUMS would detect the crack as long as it affélatstransfer of any significant signal. This
low cost HUMS approach is not able and capablepifacing existing HUMS, but in the con-
trary the combination of a SmartHUMS unit and sielddl| aims to extend or assist current
HUMS technology and to apply HUMS benefits intoaarevhich were previously thought to
be financially impossible or physically impracticalbe applied.

2 PROPOSED DI

The two selected DI algorithms investigated in théper are: Autocorrelation (sometimes
called serial correlation) and Cross-Correlation.

2.1 Autocorrelation

According to [4], time series data sometimes shepetitive behaviour or other properties
where current values have some relation to theeearhlues. Autocorrelation is a statistic
that measures the degree of this affiliation. Hidity of autocorrelation to determine
changes to otherwise regular patterns sets anlentélackdrop for the DI application. |If,
during the monitoring of a mechanical vehicle, fhedénce is detected between the behaviour
of the current data from that relating to the poergi period, the raw data during both period is



stored and compressed for further analysis. Thecatrelation technique has two most sig-
nificant parameters, which are the time series gitgth and the lag amount. Essentially the
lag amount is the parameter that allows the coreparof the time series to itself. If the lag
amount is equal to 1, the time series data is beamgpared to itself shifted by one data point
at a time.

The other advantage of using autocorrelation as & [hat it has the capacity of detecting
periodic patterns even in the presence of randdm (@@ise). If the time series contain large
amount of noise, the autocorrelation process willllse able to present the periodic patterns
by filtering out most of the noise.

The general mathematical expression for autocdmeldunction is commonly described as
[5, 6]

1T
R(n) = im = jox(t)x(t+r)dt 1)

Where T is the record length, Rxtepresents the value of the autocorrelation foncit the
time delayt, x(t) represents the value of the signal x at ttmand x(t%) is the value of the
signal x at delayed time t+ In terms of discrete time, Eq. 1 becomes:
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Where N (sample size) is the approximation of Ntne (difference between N-m and N is in
fact negligible in most cases), and m is the dehkdye called lag. Introducing™Xx,(mean of
entire time series) into Eq. 2 gives:
N-m
: 1 - -
Autocovariance = N;(Xt =X)(X+m —X) (3)

lagm=2; R_=0.95
/ m

Figure 1: Time series (solid), lags (dashed) [4]

Autocovariance is one of the two major componemtthé formulation of the autocorrelation
coefficient function for a given lag value. Accord to [4], autocovariance literally means,
“How something varies with itself”, where a timeriss gets compared to itself and the main
tool in the system is the lag. It is a quick wdywaluating deviations between the one unal-
tered time series and one that is lagged, as showig. 1. When generating autocovariance
there are two rules of thumb [7]. The first ridehat the data set should contain more than 50
values. The second rule is the largest lag foratht®covariance calculation is equal to one
guarter of the total number of values in the data s

The second ingredient for the autocorrelation ¢oieffit for a given lag is called variance and
it is obtained by standardising Eq. 3 the autodaw&e equation, therefore it can then be



compared directly to other standardised autoconeesa [4]. The equation for variance is
basically the sum of the square termx )? for each observation in the original time series,
divided by N:

N
. 1 o2
Variance = W;(Xt X) (4)

With the equation for both components known, thgcdption for the autocorrelation coeffi-
cient for a given lag is basically the autocovareulivided by the variance as presented in
Eq. 5:

. autocovariance
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Eq. 5 is one of the many forms that describe thecaurelation coefficient approximation,
also called the lag autocorrelation coefficienttloe lag serial correlation coefficient. The
autocorrelation coefficient values range betweerto+£1, with +1 meaning the time series
compared are exact duplicates of each other, wdigt means the lag value is equal to zero,
and —1 meaning the time series compared are mimages of each other. Zero means the
compared time series have no relation to each ,otltech basically means they are random.
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Figure 2: Uncorrelated Correlogram (random) Figure 3: Correlated Correlogram

A common way of analysing the autocorrelation dogfhts and their respective lag values is
by plotting the autocorrelation coefficient agaitts¢ lags. The plot is called a correlogram
and is a comprehensive way to indicate the relatigmbetween time series data. In the case
where the time series have no relationship to edlctr, the correlogram will present an ir-
regular pattern with amplitude close to zero, ekedren the lag is equal to zero, as shown in
Fig. 2. In contrast, when the time series havieang relationship, the correlogram will show
high coefficient values and a regular pattern asvshin Fig. 3.

2.2 Cross-Correlation

The cross correlation algorithm is a measure oftimelarities and shared properties between
data series. The arithmetic aspect of cross atioel is very similar to that of the autocorre-
lation. The only difference is the variable compos. In autocorrelation there is only one
series to deal with, but in cross correlation there usually two data series. The two data



series can be any type of series for example laten-related, or even identical (in such a
case, it becomes an autocorrelation analysis).e@me cross correlation has been performed
the association between the two data series willelbealed. Similar to the autocorrelation,

the cross correlation results are often being desdras a non-dimensional format. With the

non-dimensional property, it is easier to compaeedross correlated results to other results
obtained from different data sources. The non-dsi@nal cross correlation result is also

known as the cross correlation coefficient. Likgogorrelation coefficients, the cross corre-

lation coefficient values always lie between -1 arid +1 means 100% correlation in the

same sense as autocorrelation analysis, -1 me®@36 &Orrelation in the reverse order (anti-

phase), and O signifies zero correlation (meanséhes are completely independent of each
other) or two completely randomised series.

The application of this DI is to assess the amadirihe similarities between two autocorre-
lated data series, and use this information toddewhether a characteristic change has oc-
curred for the platform in question.

Cross correlation is also a type of statisticallggis. The common mathematical expression
for the continuous time cross correlation funci®generally defined as [8, 9]:

s
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As cross correlation is used to examine the compnoperties between two sequences of data
series, it is required to move the sequences peessanother entirely. This prerequisite is dif-
ferent from that of the autocorrelation, where ¢h&ulation only compute positive lags from

0 to +T to obtain all possible comparisons betwiéentime series and itself. In the case of
cross correlation if two different series are bewogsidered as shown in Eg. 6, the negative
lags of the correlation must be considered as (vell incorporated all data from —T to +T).
This process will ensure the entire length of cerées to move pass the other series, hence all
possible match positions are being scrutinisecdmHEq. 6, R/(t) represents the value of the
cross correlation function at the time delay (@) la x(t) represents the value of the series x
at time t, and y(t+) is the value of the series y at lagged time. t+

During the cross correlation analysis, if two ds¢gies are identical, the analysis procedure
actually becomes very similar to that of autocatieh analysis. The corresponding results in
a cross correlation plot (i.e. cross correlograril) lve a mirror image of itself around lag 0,
and with the highest amplitude (i.e. value of 1fhig point. The interpretation of the result in
this situation should not be treated as the sama #se autocorrelation. Because in cross
correlation one sequence is being ‘moved pastbther rather than being lagged behind from
a position of initial equivalence, it is therefaremmon to describe the successive compari-
sons as matched positions rather than lags.

Since the data series examined by the cross coorelare usually in discrete time domain, it
is therefore much more convenient to describe Eiq. discrete time as well. The discrete
time domain expression for Eq. 6 is very similathe discrete time domain of the autocorre-
lation function. The expression is shown in Eq. 7.

Ry (M) =<2 37 (06 )(Vim) = 2 ) (Vi) )
| |

N is the series size which is also the approximmatibN-m (the difference between N-m and
N is in fact small and can be ignore), and m sintitethe application of lag value in autocor-
relation analysis, but in cross correlation, itdferred to as match position. In the summation



term, the variable i is the representation of theetlimit —T and +T, as mentioned in order to
compare all possible position of the two seriegssrcorrelation computation will started with
the negative lags (the match positions that aretlesn zero or in the negative region) during
the analysis.
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In order to allow the cross correlation solutiondé able to evaluate with other cross correla-
tion results, cross correlation function in Eq.eeds to be normalised. The normalisation of
Eq. 7 produced the cross correlation coefficientagign which is as shown in Eq. 8. Differ-
ent to the autocorrelation standardisation proagduarcross correlation the standardisation is
done using the standard deviation (&) from both compared autocorrelated data sources as
shown in Eq. 8. Also different to the autocornelatstandardisation procedure, the cross cor-
relation mean values (X, y, ) of both data sources are included in the equnataninimise

the data calibration requirement for the comparigorposes.

Similar to the autocorrelation DI the easiest wayuhderstand the characteristics of cross
correlation coefficients is to plot them. The camrrelation coefficient plot is usually re-

ferred to as ‘Cross Correlogram’, which has theesamplitude range between +1 and -1 as
the correlogram from autocorrelation. However,hwiite cross correlogram the horizontal

axis contain parameters which are match positiattger than lag values. If the majority of

the match positions shown high amplitude of cosdfit and the cross correlogram shows
high degree of organised cyclic patterns, whichdadly means the two compared autocorre-
lated data series have high correlation to eacéroth

High correlation in cross correlation analysis atifjumeans both series shared large numbers
of common properties and characteristics. If treximum cross coefficient amplitude of 1
(in an ideal case) is achieved at the match posfiicand couple with both cross correlogram
from — and + region are mirror image of each othEne two autocorrelated series in this case
are very likely to be identical. In real life, hewer, cases of minor discrepancies for the
properties mentioned are always to be expected. 4~tontains a cross correlogram repre-
senting the cross correlation analysis of two iaht(ideal case) autocorrelated data series.
Fig. 5 presents the superimposed plot of — regiwh & region of the cross correlogram of
Fig. 4. As the plot shown in Fig. 5, the — andegiion of the plot is exactly identical, which
means they are mirror image of one another.

In the case where two autocorrelated data series ha relation or shared properties (i.e.
random) with each other, the corresponding croseelogram plot is presented in Fig. 6,
where the amplitudes of the plot are almost equalero. Most importantly, the maximum
amplitude does not occur at match position 0.



Cross Correlogram
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3 EXPERIMENTS

Two different experiments were performed to vetifg capability of the proposed DI to de-

tect system behavioural change. The first exparinenduced is a test rig setup that consist
of a two-stroke model helicopter engine and a theaiddd propeller. The second experiment
is a real helicopter (Hughes 300) flight trial espeent. The main purpose of conducting test
rig experiment is because for the helicopter flighperiment real fault cannot be introduced.

As a result, the test rig setup was utilised to olestrate real fault detection using the selected
DI algorithms.

Figure 7: Two-stroke motor test rig



3.1 Two-Stroke Motor Test Rig Experiment

Fig. 7 is the figure showing the actual test setrpngement of the two-stroke motor test rig.
In order to produce a genuine fault situation iswi@cided to simulate a loose bolt condition
in one of the bearing housing base mounts. The bbthe bearing housing is actually bolted
down by two bolts, and the intention is to loose a the bolts sometime during the opera-
tion of the test rig, and to see whether the Dbathms will be able to detect the loosening
effect of the bearing housing. The bearing housing its mounting points are shown in Fig.
8, where bolt 2 is the bolt that was loosed dutirggexperiment. The actual procedure during
the experiment was after T@econd of the experiment bolt 2 was set to looskadter 28
second bolt 2 was retighten. Therefore, two beiral/ichange events should be detected for
this experiment one is the loose of bolt 2 andotiver one is the retightening of the bolt 2.

Figure 8: Bearing housing and its base mount

Fig. 9 Eresents the autocorrelation and cross latiza correlogram comparisons fdf,ad"

and 11" second of Z-axis experimental data. The mainareaghy only Z-axis data is being
analysed is because bolt 1 and bolt 2 are fixeartical (Z-axis) direction. The autocorrela-
tion correlogram comparison betweeh &nd 18' second of the experimental data indicated
that both plots generally overlapped quite welleptcsome amplitude variations. In autocor-
relation correlogram comparison amplitude variagigenerally signify random interferences.
The cross correlogram plot fol'@nd 18' second experimental data shows high correlation
coefficient values, especially the maximum coedfiti occurred at match position 0. When
maximum coefficient occurred at match position le two cross correlated data sets are
highly correlated to each other. The cross cograim plot for 8 and 18' second also indi-
cated that one side of the correlogram has slighgizer amplitude than the other, which is a
characteristic usually associated with speed vanat

Fig. 10 is a zoom in plot of autocorrelation cavggam comparison betweef! 8econd and
10" second of the experiment. From Fig. 10 it is ctba phase alignment is starting to get
offset after lag value 150, which proves the spetcuh of speed variation. During the two-
stroke test rig experiment it was found the engienot always stay in constant rotation,
gradual speed variations were occasionally obsenMfth the random effects and minor
inconsistent operation of the two-stroke enginég ibgical to assume there was no significant
system behavioural change detected betwdear@ 18 second of the experiment. Same
observation cannot be said for comparison betw&¥hahd 11" second of the experiment.
As shown in lower half of Fig. 9 both autocorredatiand cross correlation correlograms
show the compared data sets are clearly very diifer The autocorrelation comparison
shows no commonality between™and 11" second of the experimental data, as well as, the



cross correlogram plot only evolved around the Zewdzontal axis (almost becomes pure
random). As a result, significant system behawdbahange has been detected. As described
before the bolt 2 was loosed aftet"€econd of the experiment, therefore, the DI has-ma
aged to detect the loosening effect of the bedrmgsing.
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Figure 9: Autocorrelation and cross correlation correlogram comparisons for 9", 10", and 11" second
of the two-stroke test rig experiment
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Figure 11: Autocorrelation and cross correlation correlogram comparisons for 20", 21%, and 22" sec-
ond of the two-stroke test rig experiment

Fig. 11 presents the autocorrelation and croselation correlogram comparisons for'20
21% and 29% second of the experimental data. Quite obviofrsin Fig. 11 the autocorrela-
tion correlogram comparison and corresponding ctosslation correlogram for 0second
and 2f' second of the experimental data shows signifisgatem behavioural change. The
autocorrelation correlogram of 2@nd 2% second are very different, which can be further
proved by referring to the cross correlogram whikeeplot has very low amplitude values and
basically collapsed around the zero horizontal #samdom). Since bolt 2 was retighten
around 28 second of the experiment, the DI managed to pidkepretightening procedure
performed. Similar to the explanation for the camigon between™second and bsecond
of the experimental data, the comparison resulteded for 2% and 22% second data at
lower half of Fig. 11 are assumed to contain naifiicant system behavioural change.
Therefore, after bolt 2 was retightened the testvent back to its steady state of operation.

Fig. 12 is a frequency domain plot of experimemtaia recorded during T4second of the
test rig experiment. At f4second the bolt 2 was still loose, hence the giptesents fault
condition existed within the test rig system. Tbadamental peak observed from Fig. 12
actually represents the operational speed of thierilg during the experiment. The opera-
tional speed during the experiment was around 100 Alsmall red coloured rectangular box
can be also observed in Fig. 12, this box actuagihlights a lower spectrum peak just before

10



the fundamental that represents the rotationaldspderom machine dynamic analogy this
phenomenon usually occurs when a bearing is loasthe drive shaft [10]. Since the"14
second data represents bearing housing loose mméditd because the bearing is rigidly con-
tained within the housing, as the bearing housiagbles the bearing inside will therefore
also vibrate on the drive shaft. Consequentlyltearing loose on drive shaft’ characteristic
is being detected. The purpose of DI is to en#ieSmartHUMS unit to isolate vital data
(data contain system behavioural change) duringritweitoring process, and to interpret these
data in order to give a general idea of what isljikhe cause of this system characteristic
change. As the vital data are recorded and prebedulise of system behavioural change is
being identified (i.e. gear problem), then methaVedoped by other researchers (i.e. A
Model-Based Gear Diagnostic Technique [11]) thacdrally designed to analyse particular
mechanical fault can be applied to further exanihme severity and actual location of the
fault.

14th Second Z-Axis FFT Plot
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Figure 12: Frequency analysis result for 14" second of the test rig experiment

3.2 Hughes 300 Helicopter Flight Experiment

The idea of the helicopter flight trial experimento test whether the selected DI algorithms
will work as intended in a real life condition. gFil3 is the photo of the Hughes 300 helicop-
ter used for the flight experiment. As the heligspcan only seated two occupants it is con-
sidered as a small size helicopter. During theegrgent no mechanical related fault was
introduced due to OH&S issue (Occupational Heaitl Safety issues). As a result, only
severe manoeuvres (large movements to all contvadsg introduced at a noted time after
reaching a stable cruise condition. Fig. 14 shidvescross correlation results of flight ex-

periment from 18 second to 18 second.

Figure 13: Hughes 300 helicopter
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Figure 14: XYZ axes cross correlogram from 13" second to 16" second of flight trial

From Fig. 14 it is quite noticeable that the XY Zeaxcross correlogram plots become signifi-
cantly less correlated (extensive reduction of ficieht values) from 1% second to 18 sec-
ond of the flight trial experiment. Certain portiof X and Z axes cross correlogram plot
patterns for 18 second flight data almost collapse around the herizontal axis (random
characteristic). As for the Y-axis 1Second cross correlogram plot the patterns acegiis-
ised as well as evolved around the zero horizamted (random). Fig. 15 shows the XYZ
axes autocorrelation comparison result betweehtftigpta 14 second and #5second. From
Fig. 15 is it quite clear that Y-axis comparisootptonsists of low coefficients and less or-
ganised plot patterns. As the flight condition viias cruise flight state, majority of forces
were in forward (X-axis) and vertical (Z-axis) ditens, which is why Y-axis indicates less
correlated characteristics. From both X-axis ardxi autocorrelation comparison plots the
blue correlogram started to become misaligned whth red correlogram from lag value
around 150 onwards. The offset of correlogram etaseans system behaviour change has
occurred. With the cross correlogram results gn E4 and autocorrelation results in Fig. 15,
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the DI have detected the severe manoeuvres ofdliepter, which was introduced during
the 18" second of the flight experiment.

X-axis: 14th sec data (red) & 15th Y-axis: 14th sec data (red) & 15th Z-axis: 14th sec data (red) & 15th
sec data (blue) sec data (blue) sec data (blue)
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Figure 15: XYZ axes autocorrelation correlogram comparison for 14" and 15" second of flight trial
4 CONCLUSION

Two different experimental test results have beemahstrated in this paper. The purpose of
the experiments is to show that selected DI algor#t could be potentially imbedded into a
low cost and small physical size HUMS unit calladeBtHUMS. The first experiment em-
ployed was a two-stroke model engine driven tagtwihere the DI were able to detect the
loosening characteristic of the bearing housingrels as the retightening action of the bolt 2.
With established machine dynamic knowledge theibgdrousing looseness was determined
through the detection of loose bearing. Sincestwnd experiment involved an actual heli-
copter, safety (OH&S) issues prevented the usectafah mechanical faults during the heli-
copter flight, but purposely introduced severe nearvoes were applied instead. Once again
the DI algorithms were able to detect the extrena@maeuvre actions as they appeared. The
concept of this low cost SmartHUMS approach mighit generate solutions that are as ex-
plicit as higher cost and more capable HUMS uthitd, it is aiming at retaining all important
data and giving a general idea of what is the yilegluse of system behavioural change. As
the essential data are retained further analysag other researcher's method could be em-
ployed to confirm and isolate the actual locatidbthe fault or faults.
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