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Abstract: This paper describes a low cost approach to helicopter health and usage monitor-
ing, which could potentially enable smaller size, lower cost, and older helicopters to have 
similar HUMS (Health and Usage Monitoring System) benefits as to the larger more expan-
sive helicopters.  The system prescribed is called ‘SmartHUMS’, a miniature HUMS unit de-
veloped by the Defence Science and Technology Organisation (DSTO) of Australia in co-
operation with GPS Online Pty Ltd.  The emphasis of this paper is not the hardware aspects of 
the SmartHUMS unit, but instead on the development of algorithms that can be utilised by the 
SmartHUMS unit.  The algorithms must be generic, simple, and should not require a compli-
cated computational system, but at still maintain high accuracy of health and usage monitor-
ing.  The algorithms developed in this research are referred as Detection Indices (DI). 
 
This paper demonstrates the DI capability using a bench top test rig driven by a two-stroke 
model helicopter motor.  Faults were purposely introduced to the rig during its operation.  
Besides the bench top experiment a flight test experiment performed onboard a Hughes 300 
helicopter was also conducted.  The helicopter experiment consisted of pilot induced manoeu-
vre effects.  The results of the experiments are presented in this paper.   
 
 
1 INTRODUCTION 

Helicopters have a higher rate of mechanical failure accidents because they are more vulner-
able to catastrophic mechanical failures than fixed wing aircraft [1].  The accidents occur 
simply because of the higher number of single load path critical parts within the rotor and 
transmission systems and the reduced redundancy within the helicopter design [2].  To de-
crease the instance rate, equipment capable of detailed monitoring of different critical helicop-
ter functions are routinely fitted to medium-sized and larger helicopters used by civil and 
some military operators.  The combination of these equipment forms a system that is capable 
of monitoring many different critical parts of a helicopter.  This system is usually referred to 
as Health and Usage Monitoring System (HUMS).  The major trigger for the development of 
HUMS in the UK and Europe is largely due to the recommendation of the CAA-
commissioned HARP report in 1984, where the report suggested that HUMS could be retrofit-
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ted onto existing rotorcraft and incorporated into new helicopter types [3].  Between 1991 and 
1997, CAA studies have shown HUMS were able to provide warnings for 69% of the failure 
types and successfully warned 60% of all the potentially catastrophic failure cases.   
 
Currently, vibration health monitoring systems have been made mandatory in the UK on large 
helicopters certified or validated since certification requirements were tightened by the CAA 
after the HARP report.  An additional airworthiness directive in 1999 also made vibration 
health monitoring systems mandatory in the UK on older types of helicopter carrying more 
than 9 passengers [3].  The main reason why only large helicopters are being fitted with 
HUMS is mainly due to the cost issue.  Larger helicopters generally cost a lot more, and to 
make matter worse a capable HUMS usually cost quite considerably.  Most helicopter opera-
tors consider installing HUMS in their fleet only if the system would provide significant eco-
nomic benefits that would outweigh the costs in the short term.  As majority benefits of 
HUMS implementation is distributed over the remaining life of the aircraft, which is why 
older types of helicopter are less likely to be considered for HUMS implementation. 
 
Another reason why HUMS are rarely considered for smaller helicopters is to do with its 
physical size.  In a small helicopter the payload dimension and weight are critical factors.  
Unfortunately HUMS generally have noticeable size and weight, as well as being generally 
too expensive to be justified to be fitted in a platform that might cost less.  Therefore, this 
paper introduces a possible solution, which will allow some of the HUMS benefits to be 
achieved in small and medium sized helicopter.  The solution is a low cost light weight minia-
ture ‘SmartHUMS’ unit combined with the proposed DI algorithms.   
     
The way the proposed DI algorithms work is that during the monitoring process the DI will 
continuously examine the vibration signal produced by a helicopter.  If an adverse condition 
develops DI will flag the event and only record the vibration data corresponding to the event 
for further analysis.  The event recorded is not necessarily fault induced.  The event could just 
be an abrupt control input by the pilot (i.e. aircraft manoeuvre).  This is where the proposed 
DI differs from conventional HUMS.  While conventional HUMS use algorithms that specifi-
cally look for individual faults (or faults in individual gears, bearings, etc.), the DI techniques 
looks for events in terms of changes in transfer functions.  For example, a conventional 
HUMS only detect a structural crack if an algorithm to detect cracks is included, while Smar-
tHUMS would detect the crack as long as it affects the transfer of any significant signal.  This 
low cost HUMS approach is not able and capable of replacing existing HUMS, but in the con-
trary the combination of a SmartHUMS unit and selected DI aims to extend or assist current 
HUMS technology and to apply HUMS benefits into areas which were previously thought to 
be financially impossible or physically impractical to be applied. 
 
2 PROPOSED DI 

The two selected DI algorithms investigated in this paper are: Autocorrelation (sometimes 
called serial correlation) and Cross-Correlation. 

2.1 Autocorrelation  
According to [4], time series data sometimes show repetitive behaviour or other properties 
where current values have some relation to the earlier values.  Autocorrelation is a statistic 
that measures the degree of this affiliation.  The ability of autocorrelation to determine 
changes to otherwise regular patterns sets an excellent backdrop for the DI application.  If, 
during the monitoring of a mechanical vehicle, a difference is detected between the behaviour 
of the current data from that relating to the previous period, the raw data during both period is 
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stored and compressed for further analysis.  The autocorrelation technique has two most sig-
nificant parameters, which are the time series data length and the lag amount.  Essentially the 
lag amount is the parameter that allows the comparison of the time series to itself.  If the lag 
amount is equal to 1, the time series data is being compared to itself shifted by one data point 
at a time. 
 
The other advantage of using autocorrelation as a DI is that it has the capacity of detecting 
periodic patterns even in the presence of random data (noise).  If the time series contain large 
amount of noise, the autocorrelation process will still be able to present the periodic patterns 
by filtering out most of the noise. 
 
The general mathematical expression for autocorrelation function is commonly described as 
[5, 6]: 
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Where T is the record length, Rx(τ) represents the value of the autocorrelation function at the 
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Where N (sample size) is the approximation of N-m (the difference between N-m and N is in 
fact negligible in most cases), and m is the delay value called lag.  Introducing x,  (mean of 
entire time series) into Eq. 2 gives: 
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Figure 1: Time series (solid), lags (dashed) [4] 
 
Autocovariance is one of the two major components in the formulation of the autocorrelation 
coefficient function for a given lag value.  According to [4], autocovariance literally means, 
“How something varies with itself”, where a time series gets compared to itself and the main 
tool in the system is the lag.  It is a quick way of evaluating deviations between the one unal-
tered time series and one that is lagged, as shown in Fig. 1.  When generating autocovariance 
there are two rules of thumb [7].  The first rule is that the data set should contain more than 50 
values.  The second rule is the largest lag for the autocovariance calculation is equal to one 
quarter of the total number of values in the data set. 
 
The second ingredient for the autocorrelation coefficient for a given lag is called variance and 
it is obtained by standardising Eq. 3 the autocovariance equation, therefore it can then be 
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compared directly to other standardised autocovariances [4].  The equation for variance is 
basically the sum of the square term (xt-x, )2 for each observation in the original time series, 
divided by N: 

2

1

1
)xx(

N
 Variance 

_

t

N

t

−= ∑
=

        (4) 

With the equation for both components known, the description for the autocorrelation coeffi-
cient for a given lag is basically the autocovariance divided by the variance as presented in 
Eq. 5: 
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Eq. 5 is one of the many forms that describe the autocorrelation coefficient approximation, 
also called the lag autocorrelation coefficient or the lag serial correlation coefficient.  The 
autocorrelation coefficient values range between +1 to –1, with  +1 meaning the time series 
compared are exact duplicates of each other, which also means the lag value is equal to zero, 
and  –1 meaning the time series compared are mirror images of each other.  Zero means the 
compared time series have no relation to each other, which basically means they are random. 
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Figure 2: Uncorrelated Correlogram (random) 
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Figure 3: Correlated Correlogram 
 
A common way of analysing the autocorrelation coefficients and their respective lag values is 
by plotting the autocorrelation coefficient against the lags.  The plot is called a correlogram 
and is a comprehensive way to indicate the relationship between time series data.  In the case 
where the time series have no relationship to each other, the correlogram will present an ir-
regular pattern with amplitude close to zero, except when the lag is equal to zero, as shown in 
Fig. 2.  In contrast, when the time series have a strong relationship, the correlogram will show 
high coefficient values and a regular pattern as shown in Fig. 3. 

2.2 Cross-Correlation  
The cross correlation algorithm is a measure of the similarities and shared properties between 
data series.  The arithmetic aspect of cross correlation is very similar to that of the autocorre-
lation.  The only difference is the variable composition.  In autocorrelation there is only one 
series to deal with, but in cross correlation there are usually two data series.  The two data 
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series can be any type of series for example related, non-related, or even identical (in such a 
case, it becomes an autocorrelation analysis).  Once the cross correlation has been performed 
the association between the two data series will be revealed.  Similar to the autocorrelation, 
the cross correlation results are often being described as a non-dimensional format.  With the 
non-dimensional property, it is easier to compare the cross correlated results to other results 
obtained from different data sources.  The non-dimensional cross correlation result is also 
known as the cross correlation coefficient.  Like autocorrelation coefficients, the cross corre-
lation coefficient values always lie between -1 and +1.  +1 means 100% correlation in the 
same sense as autocorrelation analysis, -1 means 100% correlation in the reverse order (anti-
phase), and 0 signifies zero correlation (means the series are completely independent of each 
other) or two completely randomised series. 
 
The application of this DI is to assess the amount of the similarities between two autocorre-
lated data series, and use this information to decide whether a characteristic change has oc-
curred for the platform in question. 
 
Cross correlation is also a type of statistical analysis.  The common mathematical expression 
for the continuous time cross correlation function is generally defined as [8, 9]:  
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As cross correlation is used to examine the common properties between two sequences of data 
series, it is required to move the sequences past one another entirely.  This prerequisite is dif-
ferent from that of the autocorrelation, where the calculation only compute positive lags from 
0 to +T to obtain all possible comparisons between the time series and itself.  In the case of 
cross correlation if two different series are being considered as shown in Eq. 6, the negative 
lags of the correlation must be considered as well (i.e. incorporated all data from –T to +T).  
This process will ensure the entire length of one series to move pass the other series, hence all 
possible match positions are being scrutinised.  From Eq. 6, Rxy(τ) represents the value of the 
cross correlation function at the time delay (or lag) τ, x(t) represents the value of the series x 
at time t, and y(t+ τ) is the value of the series y at lagged time t+ τ. 
 
During the cross correlation analysis, if two data series are identical, the analysis procedure 
actually becomes very similar to that of autocorrelation analysis. The corresponding results in 
a cross correlation plot (i.e. cross correlogram) will be a mirror image of itself around lag 0, 
and with the highest amplitude (i.e. value of 1) at this point.  The interpretation of the result in 
this situation should not be treated as the same as in the autocorrelation.  Because in cross 
correlation one sequence is being ‘moved past’ the other rather than being lagged behind from 
a position of initial equivalence, it is therefore common to describe the successive compari-
sons as matched positions rather than lags. 
 
Since the data series examined by the cross correlation are usually in discrete time domain, it 
is therefore much more convenient to describe Eq. 6 in discrete time as well.  The discrete 
time domain expression for Eq. 6 is very similar to the discrete time domain of the autocorre-
lation function.  The expression is shown in Eq. 7. 
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N is the series size which is also the approximation of N-m (the difference between N-m and 
N is in fact small and can be ignore), and m similar to the application of lag value in autocor-
relation analysis, but in cross correlation, it is referred to as match position.  In the summation 
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term, the variable i is the representation of the time limit –T and +T, as mentioned in order to 
compare all possible position of the two series, cross correlation computation will started with 
the negative lags (the match positions that are less than zero or in the negative region) during 
the analysis. 
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In order to allow the cross correlation solutions to be able to evaluate with other cross correla-
tion results, cross correlation function in Eq. 7 needs to be normalised.  The normalisation of 
Eq. 7 produced the cross correlation coefficient equation which is as shown in Eq. 8.  Differ-
ent to the autocorrelation standardisation procedure, in cross correlation the standardisation is 
done using the standard deviation (S1, S2) from both compared autocorrelated data sources as 
shown in Eq. 8.  Also different to the autocorrelation standardisation procedure, the cross cor-
relation mean values (x, , y,̄  ) of both data sources are included in the equation to minimise 
the data calibration requirement for the comparison purposes.   
 
Similar to the autocorrelation DI the easiest way to understand the characteristics of cross 
correlation coefficients is to plot them.  The cross correlation coefficient plot is usually re-
ferred to as ‘Cross Correlogram’, which has the same amplitude range between +1 and -1 as 
the correlogram from autocorrelation.  However, with the cross correlogram the horizontal 
axis contain parameters which are match positions rather than lag values.  If the majority of 
the match positions shown high amplitude of coefficient and the cross correlogram shows 
high degree of organised cyclic patterns, which basically means the two compared autocorre-
lated data series have high correlation to each other. 
 
High correlation in cross correlation analysis actually means both series shared large numbers 
of common properties and characteristics.  If the maximum cross coefficient amplitude of 1 
(in an ideal case) is achieved at the match position 0, and couple with both cross correlogram 
from – and + region are mirror image of each other.  The two autocorrelated series in this case 
are very likely to be identical.  In real life, however, cases of minor discrepancies for the 
properties mentioned are always to be expected.  Fig. 4 contains a cross correlogram repre-
senting the cross correlation analysis of two identical (ideal case) autocorrelated data series.   
Fig. 5 presents the superimposed plot of – region and + region of the cross correlogram of 
Fig. 4.  As the plot shown in Fig. 5, the – and + region of the plot is exactly identical, which 
means they are mirror image of one another. 
 
In the case where two autocorrelated data series have no relation or shared properties (i.e. 
random) with each other, the corresponding cross correlogram plot is presented in Fig. 6, 
where the amplitudes of the plot are almost equal to zero.  Most importantly, the maximum 
amplitude does not occur at match position 0. 
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Figure 4: Highly correlated cross correlogram 
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Figure 5: Superimposed plot of Fig. 4 
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Figure 6: Uncorrelated cross correlogram 
 
3 EXPERIMENTS  

Two different experiments were performed to verify the capability of the proposed DI to de-
tect system behavioural change.  The first experiment conduced is a test rig setup that consist 
of a two-stroke model helicopter engine and a two-bladed propeller.  The second experiment 
is a real helicopter (Hughes 300) flight trial experiment.  The main purpose of conducting test 
rig experiment is because for the helicopter flight experiment real fault cannot be introduced.  
As a result, the test rig setup was utilised to demonstrate real fault detection using the selected 
DI algorithms. 
 

 

Figure 7: Two-stroke motor test rig   
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3.1 Two-Stroke Motor Test Rig Experiment 
Fig. 7 is the figure showing the actual test setup arrangement of the two-stroke motor test rig.  
In order to produce a genuine fault situation it was decided to simulate a loose bolt condition 
in one of the bearing housing base mounts.  The base of the bearing housing is actually bolted 
down by two bolts, and the intention is to loose one of the bolts sometime during the opera-
tion of the test rig, and to see whether the DI algorithms will be able to detect the loosening 
effect of the bearing housing.  The bearing housing and its mounting points are shown in Fig. 
8, where bolt 2 is the bolt that was loosed during the experiment.  The actual procedure during 
the experiment was after 10th second of the experiment bolt 2 was set to loose and after 20th 
second bolt 2 was retighten.  Therefore, two behavioral change events should be detected for 
this experiment one is the loose of bolt 2 and the other one is the retightening of the bolt 2.    
 

 

Figure 8: Bearing housing and its base mount 
 
Fig. 9 presents the autocorrelation and cross correlation correlogram comparisons for 9th, 10th 
and 11th second of Z-axis experimental data.  The main reason why only Z-axis data is being 
analysed is because bolt 1 and bolt 2 are fixed in vertical (Z-axis) direction.  The autocorrela-
tion correlogram comparison between 9th and 10th second of the experimental data indicated 
that both plots generally overlapped quite well except some amplitude variations.  In autocor-
relation correlogram comparison amplitude variations generally signify random interferences.  
The cross correlogram plot for 9th and 10th second experimental data shows high correlation 
coefficient values, especially the maximum coefficient occurred at match position 0.  When 
maximum coefficient occurred at match position 0, the two cross correlated data sets are 
highly correlated to each other.  The cross correlogram plot for 9th and 10th second also indi-
cated that one side of the correlogram has slightly higher amplitude than the other, which is a 
characteristic usually associated with speed variation.   
 
Fig. 10 is a zoom in plot of autocorrelation correlogram comparison between 9th second and 
10th second of the experiment.  From Fig. 10 it is clear the phase alignment is starting to get 
offset after lag value 150, which proves the speculation of speed variation.  During the two-
stroke test rig experiment it was found the engine did not always stay in constant rotation, 
gradual speed variations were occasionally observed.  With the random effects and minor 
inconsistent operation of the two-stroke engine, it is logical to assume there was no significant 
system behavioural change detected between 9th and 10th second of the experiment.  Same 
observation cannot be said for comparison between 10th and 11th second of the experiment.  
As shown in lower half of Fig. 9 both autocorrelation and cross correlation correlograms 
show the compared data sets are clearly very different.  The autocorrelation comparison 
shows no commonality between 10th and 11th second of the experimental data, as well as, the 
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cross correlogram plot only evolved around the zero horizontal axis (almost becomes pure 
random).  As a result, significant system behavioural change has been detected.  As described 
before the bolt 2 was loosed after 10th second of the experiment, therefore, the DI has man-
aged to detect the loosening effect of the bearing housing.      
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Z-Axis: 11th (blue) Second Superimposed with 
10th (red) Second
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Cross Correlogram: 10th Cross 9th Second
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Cross Correlogram: 10th Cross 11th Second 
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Figure 9: Autocorrelation and cross correlation correlogram comparisons for 9th, 10th, and 11th second 
of the two-stroke test rig experiment 
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Figure 10: Zoom in plot between lag value 150 and 250 
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Z-Axis: 21st (blue) Second Superimposed with 
20th (red) Second
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Z-Axis: 22nd (blue) Second Superimposed with 
21st (red) Second
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Cross Correlogram: 20th Cross 21st Second 
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Cross Correlogram: 21st Cross 22nd Second 
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Figure 11: Autocorrelation and cross correlation correlogram comparisons for 20th, 21st, and 22nd sec-

ond of the two-stroke test rig experiment 
 
Fig. 11 presents the autocorrelation and cross correlation correlogram comparisons for 20th, 
21st and 22nd second of the experimental data.  Quite obviously from Fig. 11 the autocorrela-
tion correlogram comparison and corresponding cross correlation correlogram for 20th second 
and 21st second of the experimental data shows significant system behavioural change.  The 
autocorrelation correlogram of 20th and 21st second are very different, which can be further 
proved by referring to the cross correlogram where the plot has very low amplitude values and 
basically collapsed around the zero horizontal axis (random).  Since bolt 2 was retighten 
around 20th second of the experiment, the DI managed to pickup the retightening procedure 
performed.  Similar to the explanation for the comparison between 9th second and 10th second 
of the experimental data, the comparison results observed for 21st and 22nd second data at 
lower half of Fig. 11 are assumed to contain no significant system behavioural change.  
Therefore, after bolt 2 was retightened the test rig went back to its steady state of operation. 
 
Fig. 12 is a frequency domain plot of experimental data recorded during 14th second of the 
test rig experiment.  At 14th second the bolt 2 was still loose, hence the plot represents fault 
condition existed within the test rig system.  The fundamental peak observed from Fig. 12 
actually represents the operational speed of the test rig during the experiment.  The opera-
tional speed during the experiment was around 100 Hz.  A small red coloured rectangular box 
can be also observed in Fig. 12, this box actually highlights a lower spectrum peak just before 
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the fundamental that represents the rotational speed.  From machine dynamic analogy this 
phenomenon usually occurs when a bearing is loose on the drive shaft [10].  Since the 14th 
second data represents bearing housing loose condition and because the bearing is rigidly con-
tained within the housing, as the bearing housing trembles the bearing inside will therefore 
also vibrate on the drive shaft.  Consequently the ‘bearing loose on drive shaft’ characteristic 
is being detected.  The purpose of DI is to enable the SmartHUMS unit to isolate vital data 
(data contain system behavioural change) during the monitoring process, and to interpret these 
data in order to give a general idea of what is likely the cause of this system characteristic 
change.  As the vital data are recorded and probable cause of system behavioural change is 
being identified (i.e. gear problem), then method developed by other researchers (i.e. A 
Model-Based Gear Diagnostic Technique [11]) that specifically designed to analyse particular 
mechanical fault can be applied to further examine the severity and actual location of the 
fault.      
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Figure 12: Frequency analysis result for 14th second of the test rig experiment 

 

3.2 Hughes 300 Helicopter Flight Experiment 
The idea of the helicopter flight trial experiment is to test whether the selected DI algorithms 
will work as intended in a real life condition.  Fig. 13 is the photo of the Hughes 300 helicop-
ter used for the flight experiment.  As the helicopter can only seated two occupants it is con-
sidered as a small size helicopter.  During the experiment no mechanical related fault was 
introduced due to OH&S issue (Occupational Health and Safety issues).  As a result, only 
severe manoeuvres (large movements to all controls) were introduced at a noted time after 
reaching a stable cruise condition.  Fig. 14 shows the cross correlation results of flight ex-
periment from 13th second to 16th second.     
 

 
Figure 13: Hughes 300 helicopter 
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Figure 14: XYZ axes cross correlogram from 13th second to 16th second of flight trial  

 
From Fig. 14 it is quite noticeable that the XYZ axes cross correlogram plots become signifi-
cantly less correlated (extensive reduction of coefficient values) from 14th second to 15th sec-
ond of the flight trial experiment.  Certain portion of X and Z axes cross correlogram plot 
patterns for 15th second flight data almost collapse around the zero horizontal axis (random 
characteristic).  As for the Y-axis 15th second cross correlogram plot the patterns are disorgan-
ised as well as evolved around the zero horizontal axis (random).  Fig. 15 shows the XYZ 
axes autocorrelation comparison result between flight data 14th second and 15th second.  From 
Fig. 15 is it quite clear that Y-axis comparison plot consists of low coefficients and less or-
ganised plot patterns.  As the flight condition was in a cruise flight state, majority of forces 
were in forward (X-axis) and vertical (Z-axis) directions, which is why Y-axis indicates less 
correlated characteristics.  From both X-axis and Y-axis autocorrelation comparison plots the 
blue correlogram started to become misaligned with the red correlogram from lag value 
around 150 onwards.  The offset of correlogram phases means system behaviour change has 
occurred.  With the cross correlogram results in Fig. 14 and autocorrelation results in Fig. 15, 
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the DI have detected the severe manoeuvres of the helicopter, which was introduced during 
the 15th second of the flight experiment.      
 

X-axis: 14th sec data (red) & 15th 
sec data (blue) 
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sec data (blue) 
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Z-axis: 14th sec data (red) & 15th 
sec data (blue) 
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Figure 15: XYZ axes autocorrelation correlogram comparison for 14th and 15th second of flight trial  

 
4 CONCLUSION 

Two different experimental test results have been demonstrated in this paper.  The purpose of 
the experiments is to show that selected DI algorithms could be potentially imbedded into a 
low cost and small physical size HUMS unit called SmartHUMS.  The first experiment em-
ployed was a two-stroke model engine driven test rig, where the DI were able to detect the 
loosening characteristic of the bearing housing as well as the retightening action of the bolt 2.  
With established machine dynamic knowledge the bearing housing looseness was determined 
through the detection of loose bearing.  Since the second experiment involved an actual heli-
copter, safety (OH&S) issues prevented the use of actual mechanical faults during the heli-
copter flight, but purposely introduced severe manoeuvres were applied instead.  Once again 
the DI algorithms were able to detect the extreme manoeuvre actions as they appeared.  The 
concept of this low cost SmartHUMS approach might not generate solutions that are as ex-
plicit as higher cost and more capable HUMS units, but it is aiming at retaining all important 
data and giving a general idea of what is the likely cause of system behavioural change.  As 
the essential data are retained further analyses using other researcher’s method could be em-
ployed to confirm and isolate the actual location of the fault or faults.        
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