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ABSTRACT 

Variable speed rotors have the potential to significantly improve the performance of modern rotorcraft if 
the associated resonance complications can be overcome. One proposed method for resonance 
avoidance is to employ compressive longitudinal loads to alter the rotor’s dynamic properties. This 
method has been shown to successfully influence a blade’s dynamic properties but the following 
research investigates the static aeroelastic behavior of the blade under longitudinal loading. 

A finite element beam model is used to investigate different methods to represent the tendon loads and 
determine the impact they would have on the blade’s static behavior. The study demonstrates that the 
method for modelling tendon load is highly influential. Based on this study, the most representative and 
practically realisable loading model is selected to be used in further aeroelastic analysis. 

A loosely coupled aeroelastic beam model is then used to represent a blade with tendon loading. The 
rotor was trimmed for hover and not loaded beyond its buckling load. This model demonstrates that the 
out-of-plane and torsional deformation, conditions for vertical trim and required power are negligibly 
changed in response to the considered tendon loads. These results suggest that it is possible to control 
the blade dynamic properties without significantly affecting the rotor performance. 

 

1 INTRODUCTION 

The rotary wing sector strives towards developing 
aircraft with ever increasing speed, range and 
endurance. However, the concepts being 
investigated and employed to achieve these 
improvements, such as variable speed rotors [1, 2] 
and non-uniform blade planforms, are becoming 
increasingly elaborate and unconventional. These 
concepts can achieve the desired performance 
improvements but they often lead to significant 
dynamic complications [3]. Therefore, the ability to 
predictably control a blade’s dynamic properties is 
important to the success of future high-performance 
rotorcraft. Embedded dampers [4] were explored as a 
method to control transient loads in variable speed 
rotors. Designing for stiff, light blades [2] with high 
natural frequencies is another strategy for avoiding 
resonance in variable speed rotors. 

Centrifugal forces within a rotating rotor blade 
contribute to the restoring forces created when the 
blade is perturbed from equilibrium. The increase in 
restoring force increases the effective stiffness and it 
is therefore known as ‘centrifugal stiffening’ [5]. The 
use of compressive longitudinal preloading to control 
dynamic properties of helicopter tail booms has been 
studied [6] but the use of controlled tendons to alter a 
blade’s dynamic behaviour mid-flight is a novel area 

of research. In previous work [7], it was proposed that 
the application of a longitudinal tendon load to a rotor 
blade would reduce the amount of centrifugal 
stiffening; therefore, reducing the blade’s natural 
frequencies. It has been demonstrated, 
experimentally and computationally, that natural 
frequency reductions of 10% of the rotor frequency 
can be achieved. This method could allow for variable 
speed rotorcraft to operate over a wider range of rotor 
speeds by prescribing a reduction of the blade’s 
frequencies to avoid harmful conditions. 

The effects of this method on the blade’s static 
behaviour must be carefully evaluated. Any 
potentially detrimental influence of the tendon loading 
on the blade’s static strength, stability and 
aerodynamic performance must be understood. 
Bbenefits sought through variable rotor speeds must 
not be outweighed by performance reductions 
elsewhere. The following research utilises coupled 
aeroelastic modelling to analyse the static aeroelastic 
response of a blade under longitudinal loading. 

This paper initially introduces the studied blade-like 
structure and the different idealisations of the applied 
longitudinal load, herein referred to as a tendon load. 
Then, the static and aeroelastic models of a rotating 
blade in hover conditions are described and 
analysed. 

  



2 MODELLING 

To represent a rotor blade in hover, a set of one-
dimensional rotating beam models is used. The first 
uses prescribed aerodynamic loads to assess the 
different tendon loading configurations whilst the 
second incorporates loosely coupled aero-structural 
effects for more realistic loading configuration. These 
models shall provide insight into the effect of the 
longitudinal loading on the blade’s structural and 
aerodynamic performance as well as highlight 
increased sensitivities to the method of providing 
such loading. 

Coupled in-plane, out-of-plane and torsional motions 
are considered in this work to ensure that all relevant 
shape and loading changes are captured. The 
subsequent beam models are designed to 
incorporate the effects of the centrifugal, 
aerodynamic and prescribed tendon loadings. 
Cantilevered boundary conditions are used to remove 
any influences of blade root/hub flexibility whilst 
geometrically nonlinear analyses ensure the results 
remain valid beyond small deflections. 

The following sections describe the modelled 
structure, the different configurations considered to 
represent the tendon loading, and the beam models 
used for the static and aeroelastic analyses. 

2.1 Equivalent blade 

To maintain focus on the physics governing the 
behaviour of the blade, rather than the intricacies of 
modelling an exact blade cross-section, a simplified 
equivalent blade-like structure is considered. 

The MBB Bo 105 has been widely studied [8, 9, 10] 
and it is used here as a reference aircraft. The cross 
section of the equivalent blade was created using 
ShapeDesigner SaaS 2013, a 2D FE solver [11]. As 
shown in Table 1 and Figure 1, it was designed to 
have similar geometric and selected cross-section 
properties to the MBB Bo 105. These include in-plane 
and out-of-plane stiffnesses and mass-shear offset. It 
was not possible to match all the properties; hence 
the equivalent blade is stiffer torsionally. 

 MBB [8] Equivalent 

Twist [deg] -8 0 

Length [m] 4.91 5.00 

Root cutout [m] 1.03 0 

Rotor speed [rad/s] 44.5 50 

Table 1: MBB and equivalent blade properties 

 

 

Figure 1: MBB [8] and equivalent blade distributed 
properties 

The selected geometric attributes of the beam cross-
section are summarized in Figure 2 and Table 2. The 
thicker leading-edge C-shaped section with a thin 
vertical wall is used in the equivalent blade as this 
provides the similar offset between the mass and 
shear centres. The trailing edge section is not 
represented as it is not a significant contributor to the 
cross-sectional properties. 

 

 

 

Figure 2: Example and equivalent blade cross-
section 
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  Name Value [m] 

a Box height 0.0332 

b Box width 0.1699 

c Cavity height 0.0032 

d Cavity width 0.1042 

e Wall thickness 0.0652 

f Shear centre 0.0615 

g Mass centre 0.0829 

Table 2: Equivalent blade cross section dimensions 

2.2 Tendon loading configurations 

The method for applying the tendon force within the 
static and aeroelastic models must suitably represent 
the loading that would be expected from a real-world 
implementation. A continuous tendon running 
internally along the elastic axis of the undeformed 
blade is one likely application method. Initially, a set 
of four loading idealisations of the tendon effects are 
compared. The configuration with the best 
compromise between modelling realism and 
computational efficiency is used for the aeroelastic 
model. 

Figure 3 shows a 2D schematic of the four loading 
configurations in the in-plane and out-of-plane 
directions of the rotating blade.  

 

Figure 3: Loading configuration options 

The arrows represent the reaction forces applied at 
the tendon attachment points and the dashed lines 
visualise the direction they are defined by. 

The multiple segment configuration approximates a 
single frictionless tendon attached at the root and tip 
of the blade that travels through a series of evenly 
spaced supports. A three-segment model is shown in 
Figure 3 but this study uses twelve segments. The 
load between each of the segments is of a fixed 
magnitude and the deformed position of each 
attachment point defines the direction of the loads. 
The resultant load at each attachment point is 
projected in to the in-plane and out-of-plane 

directions and then applied to the models. As the 
direction of load vectors are dependent on the 
deflection of the blade, this configuration is state 
dependent and requires an iterative solution 
procedure. This configuration is the most 
computationally expensive but also most 
representative of a continuous tendon or a tendon 
secured at multiple ribs. 

The single segment configuration approximates a 
tendon attached at the root and tip of the blade. This 
method is a special case of the multi segment 
configuration and is applied as a single load at the tip, 
directed towards to root of the blade. This 
configuration is also state dependent and an iterative 
solution procedure is therefore required. 

The inward configuration applies a point load at the 
tip of the blade that is directed inward along the 
longitudinal axis of the undeformed blade. This 
configuration is independent of the state of the 
deformed blade and therefore does not require 
iteration. 

The tangent configuration applies a load at the tip 
which is tangential to the deformed blade. This 
configuration will create a similar load to the multiple 
segment configuration at the tip but will not produce 
any loads at the intermediate attachment points that 
would be present in the multiple segment 
configuration.  

2.3 Static analysis 

To understand the implications of the different tendon 
loading configurations, a beam model with prescribed 
aerodynamic and rotational loads is developed. A 
Finite Element (FE) tool (Abaqus/CAE 6.14-1) is used 
to create the model and to perform nonlinear static 
and linear modal analyses. 

The beam structure described in section 2.1 is 
meshed using 120 B31 (a 3D beam element with 
linear interpolation) elements. This mesh density 
provides convergence of the first six modes to within 
0.1%. Displacements and rotations at the root are 
fixed to create cantilevered boundary conditions. A 
rotational body force is then applied to provide the 
centrifugal loading field that dominates a rotor blade’s 
static and dynamic behaviour [12]. Two distributed 
loads are applied along the blade’s elastic axis to 
approximate aerodynamic loading. A constant 
1250N/m out-of-plane line load represents lift and a 
125N/m load is applied in-plane to represent the drag 
the blade would produce. 
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The multiple and single segment configurations 
require an iterative procedure which is implemented 
using Abaqus’s Python scripting environment: 

1. The first iteration is completed with a 0kN 
tendon load. 

2. The second iteration uses applied loads that 
are calculated based on the given tendon 
load and the displacements from the first 
iteration. 

3. Subsequent iterations calculate the applied 
loads from the displacements of the previous 
two iterations and apply the mean of these 
two to the model. 

4. Convergence is achieved when the tip 
deflection between the iterations changes by 
less than a set threshold value. 

For the inward configuration, a concentrated load is 
applied as described in section 2.2. For the tangent 
configuration, a concentrated load applied at the tip 
uses Abaqus’s follower force functionality to ensure 
its correct orientation. 

The modal analysis is used to calculate the first six 
natural frequencies of the blade under rotational, 
aerodynamic and tendon loading. This analysis step 
is performed after the static loading is applied. 

2.4 Aeroelastic analysis 

To investigate the aerodynamic performance in hover 
a loosely coupled static aeroelastic model is used. A 
separate continuum-based model is implemented in 
a Matlab environment to increase the modelling 
flexibility and improve computational efficiency. 

The structural component of the model uses the 
Partial Differential Equations (PDEs) derived by 
Hodges and Dowell [13] and solves them as a 
Boundary Value Problem (BVP). The PDEs are valid 
for long, slender beams undergoing moderate 
displacements. The 1D domain is divided into 12 
segments to accommodate the multi-segment 
loading configuration. 

The boundary conditions for the blade consist of a 
fully fixed cantilevered root, a tendon-loaded tip and 
intermediate continuity conditions at the segment 
boundaries. These continuity conditions ensure that 
deflections and their gradients remain continuous 
throughout the solution domain and that step changes 
in internal loads at the attachment points reflect the 
presence of the applied tendon loads. 

The internal forces and bending moments for the 
boundary conditions represent the simplified 
formulation based on [13]. These internal loads are 
defined as follows 

(1) 
𝑀𝑥+ =  𝐸𝐴𝐾𝐴

2(𝜃′ + 𝜑′) (𝑢′ +
𝑣′2

2
+

𝑤′2

2
)

+ 𝐸𝐵1
∗𝜃′2𝜑′

+ 𝐸𝐵2
∗𝜃′(𝑣′′ cos 𝜃

+ 𝑤′′ sin 𝜃) + 𝐺𝐽𝜑′ 

(2) 

 

𝑀𝑦+ = 𝐸𝐼𝑦(𝑣′′ sin(𝜃 + 𝜑) − 𝑤′′ cos(𝜃 + 𝜑)) 

(3) 

 

𝑀𝑧+ = 𝐸𝐼𝑧(𝑣′′ cos(𝜃 + 𝜑) + 𝑤′′ sin(𝜃 + 𝜑))

− 𝐸𝐴𝑒𝑎 (𝑢′ +
𝑣′2

2
+

𝑤′2

2
)

− 𝐸𝐵2
∗𝜃′𝜑′ 

(4) 

 
𝑉𝑥+ = 𝐸𝐴 (𝑢′ +

𝑣′2

2
+

𝑤′2

2
+ 𝐾𝐴

2𝜃′𝜑′

− 𝑒𝑎(𝑣′′ cos(𝜃 + 𝜑)

+ 𝑤′′ sin(𝜃 + 𝜑))) 

(5) 

 

𝑉𝑦 = −𝑀𝑦+
′ sin(𝜃 + 𝜑) − 𝑀𝑧

′ cos(𝜃 + 𝜑)

+ 𝑉𝑥+𝑣′

+ 𝑚𝑒(𝛺2𝑅 cos(𝜃 + 𝜑)) 

(6) 

 

𝑉𝑧 = 𝑀𝑦+
′ cos(𝜃 + 𝜑) − 𝑀𝑧+

′ sin(𝜃 + 𝜑)

+ 𝑉𝑥+𝑤′

+ 𝑚𝑒(𝛺2𝑅 sin(𝜃 + 𝜑)) 

where x, y and z are the axial, in-plane and out-of-
plane axes of the undeformed blade; [ ]+ denotes the 
rotated axis after deformation; Mx+, My+ and Mz+, are 
moments in the x+, y+ and z+ axes, respectively; Vx+, 
Vy+ and Vz+, are shear forces in the x+, y+ and z+ axes, 
respectively; G and E are shear and Young’s moduli; 
J is the torsional rigidity constant; Iy and Iz are the 
blade cross-section moment of inertias about the y 
and z axes; u, v, w and φ are the axial, in-plane, out-
of-plane and torsional blade deformations, 
respectively; [ ]’ is the spatial derivative with respect 
to x; θ is the pretwist angle; A is the cross sectional 
area; e and eA are the mass centroid and tensile axis 
offset from the elastic axis; B1* and B2* are the blade 
section integrals [13]; KA is the radius of gyration of 
blade cross section; m is the mass per unit length; R 
is the radius of the blade; and Ω is the rotor speed. 

The attachment point equilibrium load, { }𝐴𝑃𝐸,[ ], is 

calculated to ensure the load equilibrium is 
maintained at each attachment point. It is calculated 
as the sum of the change in the internal load 
increment across the attachment point and the net 
applied tendon load. 

  



The fully fixed root and tendon-loaded tip are 
implemented by enforcing the following boundary 
conditions at the root and tip of the blade 

(7) 𝑢 = 𝑣 = 𝑣′ = 𝑤 = 𝑤′ = 𝜑 = 0 

(8) 𝑀𝐴𝑃𝐸,𝑥+ = 𝑀𝐴𝑃𝐸,𝑦+ = 𝑀𝐴𝑃𝐸,𝑧+ = 𝑉𝐴𝑃𝐸,𝑥+

= 𝑉𝐴𝑃𝐸,𝑦 = 𝑉𝐴𝑃𝐸,𝑧 = 0 

The intermediate boundary conditions that enforce 
the geometric and loading continuities are defined as 
follows 

(9) 𝛥𝑢 = 𝛥𝑣 = 𝛥𝑣′ = 𝛥𝑤 = 𝛥𝑤′ = 𝛥𝜑 = 0 

(10) 𝑀𝐴𝑃𝐸,𝑥+ = 𝑀𝐴𝑃𝐸,𝑦+ = 𝑀𝐴𝑃𝐸,𝑧+ = 𝑉𝐴𝑃𝐸,𝑥+

= 𝑉𝐴𝑃𝐸,𝑦 = 𝑉𝐴𝑃𝐸,𝑧 = 0 

where Δ denotes the change at the boundary between 

the segments. 

The beam structure used for this model is the same 
as the equivalent blade in section 2.3 with the 
additional inclusion of the -8o linear twist. This feature 
is required to obtain more realistic aerodynamic 
loading. Additionally, this effect increases the 
coupling between the in-plane and out-of-plane 
motions. 

The aerodynamic loads are calculated using the 
Blade Element Momentum approach [14]. They are 
applied along the axis of the aerodynamic centres 
which is coincident with the axis of the mass centres. 
The blade is treated as a one-dimensional structure. 
At each element, the local air velocities and 
corresponding angles are calculated and then used to 
determine the aerodynamic loads. The inflow velocity 
is calculated iteratively to ensure that the calculated 
lift equates to the lift calculated using momentum 
theory for each element. The effective angle of attack 
αe is defined as follows 

(11) 𝛼𝑒(𝑟) = θ + φ(𝑟) + β(𝑟) − tan−1 (
𝑣𝑖

𝛺𝑟
) 

where the in-plane velocity is defined by the radial 
location r and the rotor speed Ω; vi is the inflow 
velocity, θ is the blade root pitch angle and φ is the 
torsional deformation and β is linear twist. 

The distributed lift l and drag d are 

(12) 
𝑙(𝑟) =

1

2
𝜌((𝛺𝑟)2 + 𝑣𝑖

2)𝑐𝐶𝑙(𝛼𝑒) 

(13) 𝑑(𝑟) =
1

2
𝜌((𝛺𝑟)2 + 𝑣𝑖

2)𝑐𝐶𝑑(𝛼𝑒) 

where the aerodynamic coefficients (Cl, Cd) are 
calculated using αe and a lookup table of 
experimental data for the SC1095 aerofoil over a full 
360o range of angles and Mach numbers from 0 to 1 

[15]. The values for air density and chord are denoted 
by ρ and c, respectively. 

The theoretical lift [14] calculated from the momentum 
flow through each element of the rotor is 

(14) 𝑙𝑚𝑜𝑚 = 2𝜌𝑑𝐴𝑣𝑖
2 

where dA is the annular increment of the rotor disc 
area. 

The PDEs [13] and boundary conditions (1)-(6) result 
in a static aeroelastic Boundary Value Problem. 
These equations are written as a series of first order 
PDEs in the state space form [16]. To avoid 
singularity in the formulation, an additional constraint, 
𝜕2𝜑

𝜕𝑥2 = 0, is imposed. This constraint affects cross 

sectional warping [13] but this is not expected to be 
the dominant influence in the slender beam structure 
considered in this study. The Boundary Value 
Problem in the state space form is solved using the 
collocation solver, bvp4c, implemented in Matlab 
R2015a [16]. 

Initially, the aerodynamic forces are calculated based 
on the undeformed blade shape and these forces, in 
turn, are used for the static shape calculation. The 
static shape is then used to recalculate the 
aerodynamic forces. The process repeats until the 
shape change between the consecutive iterations is 

less than the set threshold value of 110-6m in 

displacements and 110-6rad in torsion. 

A vertical trim is required to replicate hover. This is 
achieved by combining the aforementioned model 
with a trust region algorithm [17] to calculate the blade 
root pitch angle that equates lift and weight to within 

a tolerance of 110-2 N. 

The aerodynamic performance of the blade was 
calculated by multiplying the net torque at the rotor 
shaft by the rotor speed to calculate the required 
power for the blade. 

3 CASE STUDY 

3.1 Blade without tendon loads 

This section analyses the baseline blade without the 
effects of the tendon loads. It is expected that the 
static shape of the blade under rotational and 
aerodynamic loading will significantly influence the 
effects of the tendon loading. Figure 4 shows the 
shape of the baseline blade under these rotational 
and aerodynamic loadings for a range of rotor 
speeds. Positive out-of-plane and in-plane deflection 
are defined as upwards and rearwards, respectively. 



 

Figure 4: Deformed shape without tendon loading 

The effect of rotor speed on the different directions is 
considerably different. The out-of-plane deflection 
responds classically with the reduction in centrifugal 
forces (rotor speed) causing a greater deflection due 
to the aerodynamic loads. The in-plane deflection 
demonstrates a similar increase in deflection with 
reduced rotor speeds. Additionally, the in-plane 
deflection also demonstrates a negative curvature. 
This curvature is due to the mass axis lying rearward 
of the elastic axis which causes a forward bending 
moment. As the rotor speed increases, it can be seen 
that the curvature of the blade increases. Overall, the 
relatively small deflections (<2%) indicate that the 
blade responses are well within the linear range of 
flexural deformations. 

3.2 Buckling loads 

Buckling is a common failure mode of axially loaded 
structures. Therefore, this section focuses on 
buckling analysis of the rotating blade with prescribed 
aerodynamic and tendon loads. Previous research 
showed that, while the natural frequencies decrease 
with tendon loading, their sensitivity to it increases as 
the buckling load is approached [7, 17]. This trait 
could be used for establishing the criteria for safe 
application of this control method. 

The buckling load can be defined as the load at which 
the lowest eigenvalue (i.e. the square of the natural 
frequency) reaches zero, indicating a singular 
stiffness matrix [18]. The buckling load can be also 
defined as the load which, as approached, yields 
deflections that grow without limit [19]. Due to the 
multiple definitions, both the static deflections and 
eigenvalues are tracked to allow both buckling 
indicators to be investigated. 

The statics model described in Section 2.3 is used to 
analyse the change in eigenvalues and deflections 
with increasing tendon load. 

 

Figure 5: Buckling indicator tracking 

The behaviour of the inward loading configuration in 
Figure 5 features the expected classical behaviour. 
The lowest eigenvalue decreases with the applied 
load whilst the sensitivity of the eigenvalue to the 
loading increases as the buckling load is approached. 
Similarly, the magnitude of the difference in deflection 
(from the unloaded shape described in section 3) 
increases, as does its sensitivity to the loading. 

Despite initially similar response trends, the state 
dependent configurations fail to converge at higher 
loading values. Therefore, only the Inward 
configuration is used in the analysis in Figure 6. 

 

Figure 6: Rotor speed and tendon load effect on 
eigenvalues (no aerodynamic load for 0 rad/s) 

Figure 6 shows that the eigenvalues and buckling 
loads are significantly larger for the higher rotor 
speeds. This is due to the larger centrifugal loads 
increasing the tension within the blade. The equation 
of motion for an axially and transversally loaded 
Euler-Bernoulli beam [5] is 



(15) [𝐸𝐼𝑌′′]′′ − [𝑇𝑌′]′ − 𝑝2𝑚𝑌 = 𝐹(𝑌) 

where T is the axial load (e.g. distributed centrifugal 
tension) and p2 is the eigenvalue. 

Equation (15) indicates that there is an approximately 
linear relationship between axial load and 
eigenvalues. As the tendon load acts predominantly 
in the axial direction, it is expected that the 
relationship between the tendon load and blade 
eigenvalue will also be approximately linear. This 
linearity is observed at the lower tendon loads but the 
trend becomes increasingly nonlinear as the buckling 
load is approached. 

To understand the proximity to the buckling, the 
buckling load must be determined. To estimate 
buckling load values, a cubic spline fit is used to 
extrapolate the load at which the eigenvalue equals 
zero. Results of this process are shown in Figure 6. 

3.3 Tendon configuration selection 

Out of the four configurations introduced in section 
2.2, the multiple segment model represents the most 
realistic loading case. However, if the other 
configurations produce similar responses then they 
can be considered for use in the aeroelastic model to 
reduce computational cost. 

The static shapes of the blade under the effects of 
different tendon loading configurations are compared 
in Figure 7. A load of 50kN is used for all the 
configurations to ensure they would not present any 
convergence failures, as observed in Figure 5. 

 

Figure 7: Static shapes for each loading 
configuration 

 

Figure 7 shows that the inward configuration differs 
significantly from the three state dependent 
configurations. This figureFigure 7 also shows that 
the disparity between the inward configuration and 
the others is greatest in the out-of-plane direction. 

To try to understand the cause of the differences 
between the configurations, the contributions to the 
blade root moments from the tendon loads are 
calculated. These moments are displayed in Figure 8 
with the total moments shown in the legend. Positive 
moments are defined as causing positive deflections. 

 

Figure 8: Root bending moment contributions loads 

Figure 8 shows that the inward model creates the 
largest out-of-plane bending moment and hence the 
largest out-of-plane deflection. Due to the significant 
difference with the multi segment configuration in the 
out-of-plane deflection, the inward configuration is not 
considered for the aeroelastic model. The tangential 
model provides an almost identical change in in-plane 
deflection to the multi segment configuration, despite 
its different tendon loading profile. However, the 
change in out-of-plane deflection from the unloaded 
case is significantly greater than the multi segment 
model. Therefore, it is not considered for the 
aeroelastic model. The single segment model 
produces very similar total moments in both 
directions. It also produces similar change in in-plane 
deflection. However, akin to the tangential model, the 
response in out-of-plane deflection is not sufficiently 
similar to the multi segment model so it shall not be 
used for the aeroelastic model. 



It can be concluded that none of the alternative 
configurations produce sufficiently similar shape 
changes to the multiple segment model. Therefore, 
despite its computational expense, this configuration 
is used in the following aeroelastic study. 

3.4 Rotating blade in hover 

To analyse the effects of tendon loads on 
aerodynamic performance and the aeroelastic 
responses, the model described in section 2.4 is 
used. The blade has -8o linear twist, a non-zero blade 
root angle to achieve hover trim and the multiple 
segment configuration for the tendon load. 

Firstly, the static shapes of the blade under different 
tendon loads are compared in Figure 9. The tendon 
loads span from unloaded, up to near buckling to 
cover the full range of possible loads. Positive out-of-
plane and in-plane deflection are defined as upwards 
and rearwards, respectively. 

 

Figure 9: Comparison of aeroelastic static shapes 
under applied loads 

Figure 9 shows that the in-plane deflections are more 
sensitive to tendon loading than the out-of-plane 
deflections. This trend is consistent with Figure 7, 
however the tendon loading causing a negative 

change in deflection is not consistent. This 
contradicts the idealisation that tendon loading acts 
as a reduction in centrifugal tension. Figure 4 shows 
that a reduction in centrifugal tension (rotor speed) 
increases in-plane and out-of-plane deflection in the 
positive direction. Figure 7 correlates with this 
idealisation as the applied load causes an increase in 
positive deflection. Conversely, Figure 9 shows that 
an increase in tendon load leads to a change of in-
plane deflection in the negative direction. Torsional 
deformation, like out-of-plane deflection, is almost 
unaffected by tendon loading. Due to the lack of 
torsional sensitivity it is not expected that tendon 
loading will lead to static aeroelastic divergence. 

The aerodynamic performance of the blade was 
calculated for a range of rotor speeds. The power and 
trim condition were monitored as seen in Figure 10. 

 

Figure 10: Blade root angle and rotor power for 
range of rotor speeds 

Figure 10 shows that trim conditions and power vary 
greatly for different rotor speeds. However, due to the 
low sensitivity of torsional deformation to the tendon, 
the trim conditions and rotor power are negligibly 
sensitive to the tendon loading. 

3.5 Modal analysis with tendon loads 

The primary purpose of the applied loads is to alter 
the blade’s natural frequencies. The model described 
in 2.3, using the multiple segment loading 
configuration, is used for modal analysis. Figure 11 
shows the change in the natural frequencies with 
increasing tendon load, normalised against their 
corresponding 0kN values. It can be seen that tendon 
loading significantly influences the blade’s natural 
frequencies. 



 

Figure 11: Change in natural frequency with applied 
loading 

The ability to retain considerable influence over the 
dynamic properties of the blade corresponds well with 
previous research [7]. In general, the trend is for the 
lower frequency modes to be more sensitive to the 
tendon loading. In operation, the lower modes will be 
forced by the lower rotor harmonics which contain the 
most energy. Therefore, it is beneficial for these 
modes to be more sensitive to the tendon load. 

4 CONCLUSION 

The comparison of results from four different tendon 
loading configurations highlighted the influence and 
significance of the application method for the tendon 
loading. The single segment, inward and tangential 
model all produced applied load distributions and 
changes in responses that differ significantly from that 
of the multiple segment configuration. Therefore, the 
multiple segment configuration was used for the 
aeroelastic analysis. The aeroelastic model 
demonstrated that, for a given tendon loading 
configuration, the effect of coupling between the 
aerodynamics and the structure did not lead to a 
significant change in the blade static responses. Due 
to this, no appreciable influence on the blade trim 
conditions and required rotor power was observed. 

It was also shown that the sensitivity of natural 
frequencies to tendon loading from previous work 
was upheld. Further research in this area will be 
performed to reinforce and further the understanding 
of the static stability characteristics and the differing 
effects of tendon loading on static and dynamic 
responses. 
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