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Abstract. A mathematical model was created to simulate aeroelastic behaviour of a rotor during 

autorotation. Aeroelastic model of a rotor in autorotation (AMRA) captures both bending and 

twist of the blade and hence it can investigate couplings between blade flapping, torsion and rotor 

speed. The rotor blades were assumed to be perfectly rigid, i.e. flapping angle and blade twist due 

to torsion are constant along the blade span. Aeromechanical behaviour of a rotor during both 

axial flight and forward flight in autorotation were investigated. 

 

Significant part of the research was focused on investigation of the effect of different values of 

torsional and flexural stiffness of the blade on stability of the autorotation. Special care was taken 

of mutual relations between blade twist, blade flap and rotor speed. Calculations were carried out 

for several different positions of centre of gravity in order to determine stability boundary of the 

rotor.  It was found that the aeroelastic behaviour of a rotor in autorotation is affected by strong 

coupling between blade twist and rotor speed. The results obtained with the aid of the model 

demonstrate the special characteristics of autorotative regime. Coupled rotor speed/flap/twist 

oscillations (flutter) occur if torsional stiffness of the blade is lower than a critical value. This 

instability is unique to the gyroplane as it differs from both helicopter rotor flutter and fixed-wing 

flutter. 

 

Effects of gust loads on the rotor and corresponding disturbances in flap and twist of the blade 

were investigated for different blade configurations. In many cases, the results demonstrate auto-

stabilizing effect of coupling between blade twist and rotor speed. Parametric studies of influence 

of gyroplane rotor design on its performance were also accomplished. Simulations were executed 

for different blade incidence angles and various linear twist of the blade. The effect of blade tip 

mass and its different location along the blade span on gyroplane rotor performance was 

investigated also. 
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NOMENCLATURE 

 
a Lift-curve slope [1/rad] 

aL Local lift-curve slope [1/rad] 

A Rotor disc area [m2] 

AC Aerodynamic centre 

b Blade length [m] 

c Blade chord [m] 

cD Drag coefficient [1] 

cL Lift coefficient [1] 

cM Pitching moment coefficient [1] 

cR Resultant force coefficient 

CG Centre of gravity 

D Drag force [N] 

EA elastic axis 

1/f Thrust coefficient based on descending 

velocity [1] 

1/F Thrust coefficient based on resultant air 

velocity [1] 

G Gravitational force [N] 

H In-plane force [N] 

L Lift force [N] 

m Weight of the blade [kg] 

M Weight of the vehicle [kg] 

Mc Blade tip mass [kg] 

NB Number of blades [1] 

Mβ Blade forcing moment in flap [N.m] 

Mθ Blade forcing moment in torsion [N.m] 

Mψ Blade forcing moment in flap [N.m] 

Q Blade torque [N.m] 

R Rotor radius [m] 

S Rotor blade area [m
2
] 

t time [s] 

T Blade thrust [N] 

T Kinetic energy [J] 

U Inflow velocity [m/s] 

Up Vertical component of inflow velocity 

[m/s] 

Ut Horizontal component of inflow velocity 

[m/s] 

V Free-stream velocity [m/s] 

V Potential energy [J] 

Vd Speed of descent [m/s] 

vi Induced velocity [m/s] 

yc Chord-wise offset of aerodynamic centre 

of the blade from the elastic axis [m] 

yg Chord-wise offset of centre of gravity of 

the blade from the elastic axis [m] 

α Blade angle of attack [rad] 

αD Rotor disc angle of attack [rad] 

β Blade flapping angle [rad] 

φ Inflow angle [rad] 

γ Angle of descent/climb of the vehicle 

[rad] 

ι Blade fixed angle of incidence [rad] 

λ, λp Vertical inflow ratio [1] 

θ Blade angle of induced twist [rad] 

ρ Air density [kg.m
-3
] 

τ Blade geometric twist [rad] 

τ Time constant matrix 

Λ Dynamic inflow static gain matrix  

Ω Rotor speed [rad] 

ψ Blade azimuth [rad] 
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1. INTRODUCTION 

 
The gyroplane represents the first successful rotorcraft design and it paved the way for the 

development of helicopter during 1940s. Further development of the gyroplane was ceased 

during following decades as helicopter became more successful. Interest in this type of aircraft 

was resurrected in recent years thanks to simplicity of its design and low operational costs.  

 

Unfortunately, autogyros, or gyroplanes, have been involved in number of fatal accidents during 

last two decades
1
. Sudden loss of rotor speed or mechanical failures of the rotor blades as 

delamination were involved in many of the accidents. Very little data on gyroplane flight 

mechanics and handling qualities are available in the literature. This forced the UK Civil 

Aviation Authority (CAA) to investigate these problems by contracting the Department of 

Aerospace Engineering, University of Glasgow to investigate aerodynamics and flight mechanics 

of a gyroplane.
1, 2, 3, 4

 

 

The cause of the high accident rate of gyroplanes still remains unclear. Rotor aeroelastic 

instability has not yet been investigated as a possible cause of some the accidents and it is the aim 

of the present work to investigate this possibility. This paper shows preliminary results of a CAA 

funded project on “Aeroelasticity of Gyroplane Rotors”.  

 

The aim of the investigation is to identify flight conditions or configurations of the rotor that 

might have catastrophic consequences and work out basic design criteria for gyroplane blades. 

Resulting aeromechanical model of gyroplane rotor blade can be also used for prediction of 

stability of new or modified gyroplane rotor configurations. 
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2. DEVELOPMENT OF AN AEROELASTIC MODEL OF GYROPLANE ROTOR 

 

2.1. Overview of the model 

 

There are substantial differences between dynamics of a helicopter rotor and dynamics of a rotor 

in autorotation. During autorotation, both torque and thrust are generated exclusively by flow 

through the rotor disc. Thus, in comparison with dynamics of a helicopter rotor, the system has 

one extra degree of freedom (i.e. rotor speed). Thrust and torque are functions of rotor speed and 

distribution of local angles of attack along the blade span. Further, angles of attack are dependent 

upon blade twist, rotor speed, speed of descent and induced velocity.  It can be easily shown that 

both speed of descent and rotor angular velocity are strongly dependent upon rotor torque and 

rotor thrust. Therefore, simulation of the aeroelastic characteristics of a rotor in autorotation is 

iterative process that involves large number of algebraic loops. This makes modelling of 

autorotation significantly more challenging than powered flight.  

 

During steady autorotation, overall torque generated by flow through the rotor disc is zero and 

rotor thrust is equal to the weight of the vehicle. There are several design parameters of the rotor 

that determine whether steady autorotation is possible. Perhaps the most important are blade 

incidence angle (i.e. angle of attack of the blade relative to the rotor disc plane) and blade 

torsional stiffness. Torque equilibrium can not be achieved for high incidence angles due to high 

value of blade drag. If torsional rigidity is too low, extensive blade twist has the same effect.  

 

Conditions in which rotor enters autorotative regime are also of great importance. If rotor speed 

is too low or even zero, the rotor does not autorotate but enters the windmilling regime, requiring 

pre-rotation to be included in the simulation. A constant value of torque is applied to the rotor in 

order to reach conditions that make autorotation possible.  

 

Aeromechanical model of autogyro rotor was developed with the aid of MATLAB – SIMULINK
®
 

computer package that offers powerful tools for modelling of complex mechanical systems. The 

model was named AMRA, which stands for ‘Aeroelastic Model of a Rotor in Autorotation’. 

 

A blade element method combined with quasi-steady aerodynamics is used for calculation of 

aerodynamic forces and moments generated by the rotor blade. Aerodynamic characteristics of 

the aerofoil for the full range of angles of attack are approximated with the aid of wind tunnel 

data
5
. NACA 0012 aerofoil was chosen for the first version of AMRA model since aerodynamic 

characteristics for full range of angles of attack of the aerofoil are available
6
. Semi-empirical 

method of induced velocity calculation was used in the first versions of AMRA model. The 

original calculation
7
 was improved in order to capture blade stall and compressibility of the 

airflow. Simplified version of Peters - HaQuang inflow model modified by Houston
8, 9

 replaced 

semi-empirical approach in the later versions of the AMRA model in order to improve fidelity of 

forward flight simulations.  

  

Lagrangian equations of motion were used to describe dynamics of the rotor blade. Adjustable 

blade incidence (collective pitch in helicopter jargon) and coning angle were incorporated in the 

dynamic model of the blade. The rotor is assumed to have no lag hinge since it has extra degree 

of freedom in azimuth. Chord-wise locations of elastic axis (EA), centre of gravity (CG) and 

aerodynamic centre (AC) can be set in each span-wise station. Values of flexural and torsional 

rigidity of the blade can be set to investigate behaviour of the rotor for different physical 
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properties of the blades. AMRA model also allows placement of single concentrated mass at any 

span-wise station of the blade. 

 

2.2. Aerodynamic model of rotor in autorotation 

 

During autorotation, the flow through the rotor has opposite direction than in the case of powered 

flight of a helicopter. Thus, blade aerodynamic angle of attack has to be expressed in different 

form. 

 

 Aα θ φ= +  (2.1) 

 

Where inflow angle is 

 

 
p

T

U
arctg

U
φ

 
=  

 
 (2.2) 

 

Local values of vertical and horizontal components of inflow velocity (U) have to be calculated 

in order to determine aerodynamic angle of attack of any blade section. Inflow velocity is a 

function of angle of attack of the rotor disc that is given by sum of incidence angle of the rotor 

disc ι (i.e. angle between rotor disc plane and the horizontal) and pitch angle of the vehicle γ (see 

Eq.(2.3)). During axial flight, rotor disc angle of attack is 90deg. 

 

 

D

d

h

V
arctg

V

α ι γ

γ

= +

 
=  

 

 (2.3) 

 

Leishman
10

 shows that, if quasi-steady flow is considered, lift coefficient of oscillating wing 

section can be described as follows.  

 

 
1 2

2 2

2

EA

l

c
y

h c
c a

cV V

α
α

  −  
≈ + + −  

  
   

& &
 (2.4) 

 

Previous equation can be rewritten so as to describe quasi-steady aerodynamics of a rotor blade 

more clearly and to match with coordinate system orientation of the model (see Fig.1).  

 

 
3

4
l EA

r c
c a y

r r

β θ
θ φ
  ≈ + − − −  Ω Ω  

& &

 (2.5) 

 

If inflow angles are small, the assumption can be made that P

T

U

U
φ ≈ . Considering that TU r≈ Ω , 

it can be noted that terms on the right-hand side from φ  can be understood as quasi-steady 

components of inflow angle. This agrees with the widely used quasi-steady form of blade-
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element theory that incorporates the quazi-steady terms into calculations of the inflow angle.
11

 

Referring to Fig.2, if ι is the incidence angle of the rotor disc, the angle between the blade 

longitudinal axis and the horizontal plane can be expressed as
10, 12 

 

 cosBι β ι ψ= −  (2.6) 

 

Therefore, the vertical component of the inflow velocity can be expressed as 

 

 3
cos( cos ) sin( cos )cos cos cos

4
p d h i EAU V V v r c yβ ι ψ β ι ψ ψ β β θ θ = − + − − − − − 

 
& &  (2.7) 

 

The horizontal component of inflow velocity is given by the following equation  

 

 ( ) 3
cos sin sin cos sin

4
t h d EA

c
U V V r yι ι ψ β θ θ = − +Ω − − 

 
&  (2.8) 

 

Component of inflow velocity that is tangential to the rotor disc and parallel with blade axis is 

usually neglected, especially if axial flight is considered. It is given below.
 

 

 cos( cos ) cos sin( cos ) sinr h d iU V V vβ ι ψ ψ β ι ψ β= − + − −   (2.9) 

 

The above equations describe inflow velocity components for general flight conditions and they 

were used in AMRA model of a gyroplane rotor. However, the equations can be modified and 

simplifying assumptions can be made when describing axial flight or high speed forward flight. 

 

In axial flight, horizontal speed is negligible and 
2

D rad
π

α γ= = . Thus, 0Dι α γ= − = . 

 

 

3
cos cos cos

4

3
cos sin

4

sin sin

p d i EA

t EA

r d i

U V v r c y

c
U r y

U V v

β β β θ θ

β θ θ

β β

 = − − − − 
 

 = Ω − − 
 

= −

& &

&  (2.10) 

 

If both flapping angle and pitch angle of the blade are small, equations (2.10) can be rewritten. 

 

 

3

4

3

4

p i d EA

t EA

r d i

U v V r c y

c
U r y

U V v

β θ

θθ

β β

 = − + − − − 
 

 = Ω − − 
 

= −

& &

&  (2.11) 

 

Components of inflow velocity can be expressed in different if following substitutions are made
13 
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1 3

4

cos cos

d i
EA

D D

V vr
x y c y

R R R

V
R V

R

λ

α µ µ α

−  = = = − Ω  

= ⇒ Ω =
Ω

 (2.12) 

 

Hence, equations (2.11) can be written in different form. 

 

 

p

t

r

U R x y

U R x y

U R

β θ
λ

θ
θ

λβ

 
= Ω − − Ω Ω 

 
= Ω − Ω 
= Ω

& &

&

 (2.13) 

 

Above equations can be further modified with the aid of the equation below 

 

 
1 d dt d d

dt d dt dψ ψ
= =

Ω
 (2.14) 

 

Using the above transformation, we get 

 

 

p

t

r

d d
U R x y

d d

d
U R x y

d

U R

β θ
λ θ

ψ ψ

θ
θ

ψ

λβ

 
= Ω − − 

 

 
= Ω − 

 
= Ω

 (2.15) 

 

In case of high speed forward flight, rotor disc incidence (ι ) is very small and hence the 

assumption can be made that 
Dα γ≈ . Therefore, equations (2.7), (2.8) and (2.9) can be rewritten 

in the following manner 

 

 

3
cos sin cos cos cos

4

3
sin cos sin

4

sin cos cos sin

p d h i EA

t h EA

r d h i

U V V v r c y

U V r c y

U V V v

β β ψ β β θ θ

ψ β θ θ

β β ψ β

 = + − − − − 
 

 = + Ω − − 
 

= + −

& &

&  (2.16) 

 

Since rotor disc incidence is negligible, horizontal and vertical components of free-stream 

velocity are cosh DV V α=  and sind DV V α= . Further simplifications in the above equations can 

be made with the aid of the assumption that flapping angle (β) and blade twist (θ) are small.
11,14,15
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3
cos cos

4

3
cos sin

4

cos

p d i EA D

t EA D

r d h i

U V v r c y V

U r c y V

U V V v

β θ β α ψ

θ θ α ψ

β ψ β

 = − − − − + 
 

 = Ω − − + 
 

= + −

& &

&  (2.17) 

 

Ignoring negligible terms, it follows from (2.12), (2.7) and (2.8) that 
11, 15

  

 

 ( )
( )

cos

sin

cos

p

t

r

x y
U R

U R x

U R

λ β θ µβ ψ

µ ψ

λβ µ ψ

 = Ω − − + Ω Ω 
= Ω +

= Ω +

& &

 (2.18) 

 

Transformation shown in (2.14) yields in the equations below 14, 15 

 

 ( )
( )

cos

sin

cos

p

t

r

d d
U R x y

d d

U R x

U R

β θ
λ µβ ψ

ψ ψ

µ ψ

λβ µ ψ

 
= Ω − − + 

 
= Ω +

= Ω +

 (2.19) 

 

Simplified equations (2.17), (2.18) and (2.19) are frequently used in open literature (see Ref. 11, 

14 and 15).  

 

Once both components of inflow velocity (U) are computed at each span-wise station, span-wise 

distributions of inflow angle and blade aerodynamic angle of attack can be obtained from 

equation (2.1). Consequently, local lift, drag and pitching moment coefficients at each station can 

be determined. In early versions of the AMRA model, aerodynamic coefficients were derived 

from look-up tables of experimental measurements of the aerodynamic characteristics of NACA 

0012 for full range of angles of attack.16 In the later versions of the AMRA model, the look-up 

tables were replaced with polynomial approximations introduced by Prouty.5 Lift, drag and 

moment coefficients are expressed as functions of Mach number and angle of attack. Therefore, 

this approach incorporates compressibility effects into the calculations. Figures 3 and 4 show 

trends of lift coefficient and drag coefficient of NACA 0012 obtained with the aid of Prouty’s 

polynomial approximation. 

 

When the values of aerodynamic coefficients at all span-wise stations are obtained, the forces 

generated by the blade can be calculated. 

 

 2 2 2 2

/ 4

1 1 1

2 2 2
L D c MdL c U cdx dD c U cdx dM c U c dxρ ρ ρ= = =   (2.20) 

 

It can be seen from equations (2.10) that inflow velocity does not depend upon azimuth in axial 

flight. This symmetry makes modelling of axial flight much easier since model of single blade 
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can be created and resulting aerodynamic forces can be obtained by multiplying of blade lift, drag 

and pitching moment by number of blades (NB).  

 

 / 4 / 4,B Bl B Bl c B c BlL N L D N D M N M= = =  (2.21) 

 

In forward flight, inflow angle of the blade is a function of azimuth. Therefore, assumption of 

uniform rotor disc loading cannot be made.  

 

 ( ) ( ) ( )/ 4 / 4, / 4,

1 1 1

B B BN N N

Bl B Bl Bl B Bl c c Bl B c Bl

l l l

L L N L D D N D M M N Mψ ψ ψ
= = =

= ≠ = ≠ = ≠∑ ∑ ∑  

  (2.22) 

 

2.3. Inflow model 
 

Many models of helicopter aerodynamics utilise momentum theory for computation of induced 

velocity. However, for small negative values of speed of climb, momentum theory fails to 

estimate induced velocity correctly (see Fig.5). Therefore, classical momentum theory cannot be 

used for calculation of induced velocity of autorotating rotor.  

 

i) Axial flight 

 

Early versions of the AMRA model used a semi-empirical method computation of induced 

velocity.
7
 The model uses combination of classical theory of blade aerodynamics and 

experimental data to estimate values of both induced velocity and speed of descent from the value 

of vertical component of inflow velocity (Up). The original method published in Ref. 7 was 

improved in order to include the effects of blade stall and compressibility. 

 

The relationship between speed of descent and vertical component of speed of descent is given by 

empirical relation of thrust coefficient based on resultant air velocity 
1

F
 and thrust coefficient 

based on descending velocity 
1

f
. 

     

2 2

2 2

2

21

21

p

d

p

d

R U

F T

R V

f T

Uf

F V

π ρ

π ρ

=

=

 
=  

 

     (2.23) 

 

Several experimental measurements of these coefficients were carried out and the results 

published in open literature.
7, 9, 10, 11

 Data from these experiments are summarised in Fig.6. Full-

scale experimental results from NACA Technical Note no. 2474
13

 were used in the AMRA 

model.  
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It can be shown
7
 that Up can be calculated with the aid of vertical inflow ratio. 

 

 
2

2 4

2
4

3 3 2 2 4

p p d i

De DeL L L

B e

p

L De

u R V v

c ca a a Q

N R c

a c

λ

θ θ
ρ

λ

= Ω = −

   − + − − − −     Ω    =
−

 (2.24) 

 

While linear lift curve and a parabolic drag curve were used in the original semi-empirical 

method, an approach that allows capture of the effects of blade stall was developed and used in 

the model. The constant lift-curve slope, which was used in Ref. 7, was replaced by ‘local’ lift 

curve slope (aL) and parabolic approximation of drag curve was substituted for value of cD 

obtained from experimental data. Local lift curve slope represents slope of imaginary linear lift 

curve that contains the point [αi, cL, i]. The variable does not have any physical significance and it 

is merely used to introduce stall effect into the inflow model. 

 

 
,

, ( )
L i

L i

i

c
a f α

α
= =  (2.25) 

 

Figure 7 shows that different value of aE is allocated to each point of lift curve ( La a≡  before 

stall if the blade section is symmetrical). Since step size of the simulation is very low, this 

approach induces much lower error that linear lift curve approach. 

 

ii) Forward flight 

 

Since the above semi-empirical inflow model was developed for modelling of axial autorotative 

flight, alternative inflow model had to be used for forward flight simulation. Modified version of 

Peters – HaQuang inflow model that was introduced by Houston8, 9 was used instead. Induced 

velocity is resolved into three components.  

 

 0 sin cosi i is icv v xv xvψ ψ= + +  (2.26) 

 

These components of the induced velocity are calculated from the following system of 

differential equations.
 8, 9

  

 

 [ ] [ ]
0 0i i

is is

ic ic

v v T

v v L

v v M

τ
     
     + = Λ     
          

&

&

&

 (2.27) 

 

Matrix τ is the time constant matrix
8, 9

 and is defined as  

 



11 

 

[ ]
( )

( )

0

.
4 2

0
3 12

64
0 0

45 1 cos

5 .
64 .cos2

0
8 45 1 cos

T m

m

T m

R tg
R

V C u

R

u

R tg
R

V u

χ

π

τ
π χ

χ
χ

π χ

  −  
  

 
 
 =  +
 
  

    
+  

 (2.28) 

 

Whilst matrix Λ is defined as the dynamic inflow static gain matrix and is given by 
8, 9

 

 

 
[ ]

( )

( )

15 .
2

0
2 64

4
0 0

1 cos

15 .
4cos2

0
64 1 cos

T m

m

T m

tg
R

V u

u

tg

V u

χ
π

χ

χ
π

χ
χ

  
  

  
 
 
 Λ = − +
 
  

    −
+  

 (2.29) 

 

In the equation (2.27) T, L and M are rotor thrust, rolling moment and pitching moment. If Vx, Vy 

and Vz are component free-stream velocities, the remaining variables form equation (2.27) are 

given as follows.
 8, 9

 

 

 

( )( )

( )

2 2

22 2

2 2

1

0

2

2

tan

8

3

x y mom z mom z

m

T

T x y z mom

mom

x y

mom z

V V u V u V
u

V

V V V V u

T
u

A

V V

u V

C

ρ

χ

π

−

+ + − −
=

= + + −

=

 +
 =
 −
 

=

 (2.30) 

 

From the system of equations (2.27), only first equation was used in the simulation and the 

remaining two components of induced velocity were assumed to be negligible. This modification 

decreases computing time and reduces complexity of the AMRA model significantly. The 

equation below shows solution for the rate of change of vertical component of induced velocity. 

 

 

2 2 2 2

0 0 2 2

0 3

3 2 2
2

8

i x y z z

i

T T
C R v V V V V T

R R
v

R

πρ
πρ πρ

ρ

 
 + + − + −
 
 = −&  (2.31) 
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Hence, the value of induced velocity during forward autorotative flight can be obtained by 

integration of the above equation according to time. 

 

 
0 0i i iv v v dt≈ = ∫ &  (2.32) 

 

2.4. Blade dynamics 
 

The rotor blades are modelled as perfectly rigid beam, which means that both flap and twist of 

the blade are constant along the blade span. The blade has three degrees of freedom – in flap, 

torsion and rotor speed. Lagrangian equations of motion were used for the dynamic model of the 

blade. The system of equations consists of three differential equations that describe dynamic 

behaviour of the blade in pitch (twist), flap and rotation. General arrangement of blade equation 

motion is shown below.  

 

 

d T T V
M

dt

d T T V
M

dt

d T T V
M

dt

β

ψ

θ

β β β

ψ ψ

θ θ θ

 ∂ ∂ ∂
− + = ∂ ∂ ∂ 

∂ ∂ ∂  − + = ∂Ω ∂ ∂ 

∂ ∂ ∂  − + = ∂ ∂ ∂ 

&

&

 (2.33) 

 

In the above equations, T is blade kinetic energy and V is potential energy of the blade and Mβ, 

Mψ and Mθ are forcing moments. The potential energy of the blade consists of a component due 

to flexibility of the blade (VF) and a component due to mass of the blade (VM). Span-wise mass 

distribution of the blade was assumed to be homogenous during derivation of the equations of 

motion. Hence, T and V of a gyroplane rotor having weight m, length b, flexural stiffness kβ, 

torsional stiffness kθ and offset of elastic axis from centre of gravity yg are as follows. 
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After integration, equations describing kinetic and potential energy of the blade give 
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  (2.35) 

 

Both blade kinetic energy and the final form of Lagrange’s equations of motion were verified 

with the aid of MAPLE
®
 and MATLAB

®
 software packages. Forcing moments of the blades are 

computed from the output of the aerodynamic model of the blade. Each blade is divided into ten 

span-wise elements and aerodynamic forces and physical properties of the blade are defined in 

the middle of each element (see Fig.8). Thrust, in-plane force, torque and pitching moment of the 

j-th span-wise blade element can be calculated using equations below. Boundaries of the element 

of the blade are defined by dimensionless span-wise coordinates xj-1 and xj. Variable yc is the 

offset of aerodynamic centre of the blade element from its centre of gravity and R is blade length 

(i.e. radius of the rotor). 
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Using the variables defined in the previous equation, forcing moments in system of equations 

(2.33) are 
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3. EXPERIMENTAL MEASUREMENTS OF BLADE PROPERTIES 

 

Since majority of gyroplane rotor blades are manufactured by small private companies, it is 

relatively difficult to get any information of structural properties of these blades. A couple of 

blades from the Montgomerie-Parsons autogyro were subjected to a series of experiments in 

order to assess its physical properties and mass distribution. Data gathered during the 

experiments were used as input values of the simulations. 

 

The first blade was cut up into 20 sections and each was measured and weighed so as to ascertain 

span-wise mass distribution of the blade. Chord-wise position of centre of gravity was also 

estimated for each blade element from the arrangement of internal structure of each blade section 

(i.e. position and size of the spar, thickness of the skin and distribution of potential filling 

material).  

 

Figure 9 shows the internal structure of the blade at blade root and at the tip. It can be seen that 

both mass distribution and chord-wise positions of CG are mainly given by span-wise 

distribution of the spar. Span-wise distributions of blade mass and CG locations that were 

obtained from the experiments are depicted in Fig.10 and Fig.11. 

 

Experimental measurements accomplished with use of second Montgomerie-Parsons autogiro 

rotor blade were focused on structural properties of the blades. Torsional stiffness and chord-wise 

positions of elastic axis of the blade were measured at three span-wise stations. Span-wise 

positions of these the stations were x = 0.25 (quarter-span), x = 0.5 (half-span) and x = 0.75. The 

rotor blade was firmly fixed at the root and clamped into outboard clamp at the appropriate span-

wise station. The outboard clamp was then used for loading of the blade with a torsional moment. 

Constant weight was used and loading moment was changed by shifting of the weight along the 

clamp arm. Consequent measurements of blade angular deflections allowed calculation of 

appropriate stiffness coefficients.  

 

 
M

k θ
θ θ

=  (3.1) 

 

Angular deflections of the blade in pitch were determined with the aid of calibrated angle 

measuring instruments that was fixed to the upper surface of the clamp. The arrangement of the 

equipment during the experiment is shown in Fig.12. Measurements were carried out for different 

values of torque at each span-wise station to increase higher accuracy of stiffness estimation. 

Graphical interpretations of the results are given in Fig.13. Torsional stiffness was determined for 

each span-wise station of the blade (see the table below). 

 

Span-wise station [1] 0.25  0.5  0.75  

Location of EA [%c] 35.5 25.3 27.24 

GJ [N.m
2
/rad] 1534 1443 1409 

 

Table 1 – Locations of elastic axis and torsional stiffness as obtained during the experiment. 

 

Measurement of the first flexural natural frequency of the blade was used to estimate flexural 

stiffness of the blade. Determination of blade flexural stiffness that was used during the 

experiment is described below. 
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Data gathered during the experiment are shown in the table below. 

  

Number         

of  Time [s] T [s] f [Hz] ωωωω [rad/s]    
oscillations         

60 47.63 0.793833 1.25971 7.914993 

60 47.62 0.793667 1.259975 7.916655 

60 47.67 0.7945 1.258653 7.908352 

 

Table 2 – Characteristics of oscillations in flap of Montgomerie-Parsons rotor blade. 

 

The resulting estimated value of flexural stiffness is EI = 1166.2 N.m
2
. 
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4. SIMULATION OF AUTOROTATIVE AXIAL FLIGHT 

 

4.1. Initial observations and verification 

 

Series of simulations of aeromechanical behaviour of a gyroplane rotor in axial autorotative flight 

was performed. The input parameters of the simulations can be found in Table 3.  

 
PARAMETER VALUE 

Blade length (R) 3.63m 

Blade chord (c) 0.2m 

Chord-wise position of EA (yEA) 0.08m = 40%c 

Chord-wise position of CG (yCG) 0.066m = 33%c 

Chord-wise position of AC (yAC) 0.05m = 25%c 

Offset of CG from EA (yg) 0.014m 

Offset of AC from EA (yc) 0.03m 

Blade weight (m) 13kg 

Number of blades (NB) 2 (but just 1 modelled –  assumption of symmetry) 

Blade fixed incidence angle 0 rad 

Span-wise distribution of blade geometric twist ε = 0 rad 

Weight of the autogyro (M) 400kg 

Blade torsional stiffness coefficient (kθ) 1600N.m
2
/rad 

Blade flexural stiffness coefficient (kβ) 1200N.m
2
 

Blade section geometry NACA 0012 

Torque used for pre-rotation (QPR) 2000N.m 

 

Table 3 – Input parameters of the simulations. 

 

Simulations of a gyroplane rotor in steady autorotative descent have revealed that the AMRA 

model captures all key features of the system. The rotor speed has to be increased by application 

of external torque during pre-rotation. Once the rotor speed reaches sufficient value, the external 

torque is removed and the system enters autorotative regime. Both acceleration of the rotor from 

lower rotor speed and transition from helicopter regime (i.e. deceleration from higher rotor speed, 

see Fig.14) can be demonstrated by the simulation (see Fig.15). Note that rotor speed always 

stabilises at the same value once steady autorotation is established since its configuration did not 

change.  

It should be noted that rotor speed in autorotation is much lower than rotor speed of helicopter 

rotor during flight. It can be seen from Fig.14 that the rotor speed is stabilized and the system 

reaches torque equilibrium within few seconds. At this point, the total thrust of the rotor is in 

balance with the weight of the vehicle and the value of speed of descent is approximately 11.5m/s 

(see Fig.16). The value of speed of descent agrees with the results of experimental flight 

measurements that were carried out by NACA and several other research bodies.
10,12

 The 

equation below shows empirical relationship of disc loading of an autogiro and speed of descent 

that was derived from the experimental results.10, 12 

 

 1.212 /dV T A≈  (4.1) 

 

Weight of the vehicle is M = 400kg and rotor radius is R = 3.63m, hence rotor disc loading is T/A 

= 96N.m
-2
 and equation (4.1) gives speed of descent Vd = 11.8m/s.  

 

A characteristic span-wise distribution of blade torque for a rotor in the autorotative regime is 

observed. The inboard part of the blade generates positive torque and the outboard part of the 
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blade generates negative torque. In steady autorotation, the total value of torque generated by the 

blade is zero. Figure 17 shows a comparison of span-wise distribution of torque obtained from 

the simulation and torque distribution as described in open literature.
10, 12

 

 

The so-called coefficient of resultant force is another important characteristic of autorotative 

regime.
10, 12 

It is defined by 

 

 

2

2 2

2 2

2
R

h d

R
c

V A

R L D

V V V

ρ
=

= +

= +

 (4.2) 

 

Previous research involving experimental flight measurements
10, 12

 found that cR on typical rotor 

of an autogyro during steady autorotative flight at large rotor disc angles of attack (αD > 30deg) 

is about 1.25. It is important to realize that the majority of gyroplane rotors have very small or 

zero fixed blade angle of incidence (in effect a collective pitch setting, in helicopter jargon). The 

value of cR is different for non-zero blade angles of incidence as it is shown later in this paper. 

Figure 18 shows a comparison of experimental values of cR
10, 12 and the outcome of the 

simulation. The AMRA model predicts value of cR to be 1.19. 

 

 

4.2. Parametric studies 

 

A series of parametric studies of basic rotor designs were undertaken in order to gain more 

knowledge about the influence of different design parameters of a gyroplane rotor on its 

performance.  

 

i) Blade fixed incidence 

 

Experimental investigations of gyroplane aerodynamics revealed that range of blade fixed 

incidence angle (collective pitch), for which steady autorotation is sustainable, is limited.
10, 12 

Results obtained from the AMRA model correlate with conclusions of experimental 

measurements. The model shows that excessive values of blade collective pitch cause stall of the 

inboard regions of the blade (i.e. driving region), hence torque equilibrium is not possible. As a 

result, rotor speed decreases rapidly, thrust decreases and velocity of descent increases. 

Comparison of the autorotational diagram
12

 and output from the AMRA model (see Fig.19) 

shows that the simulation correctly estimates critical blade pitch to be about 0.2rad. 

 

In the case of negative value of blade fixed incidence angle, the rotor speed is significantly higher 

than for zero or small positive value of the angle and torque equilibrium is established. However, 

this configuration of autogyro rotor is not practical since speed of descent during steady 

autorotation is very high. 

 

ii) Blade twist 

 

A parametric study was performed to establish the influence of blade twist. The conclusions are 

very similar to those obtained during the study dealing with varying blade incidence angle - i.e. 
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steady autorotation is possible only for moderate values of blade twist. However, the limity value 

of linear blade twist is higher as it affects mainly the outboard part of the blade where inflow 

angle is relatively small (see Fig.21). It can be noted that, in analogy with the study of the effect 

of blade incidence angle, negative twist of the blade increases both rotor speed and velocity of 

descent.  

 

Provided that rotor speed is high enough and the rotor blade is in stable configuration, 

autorotation is a very stable flight regime. Simulations were carried out for several different 

magnitudes of twist disturbance to study the ability of a rotor in autorotation to recover from a 

gust. The effect of a gust was modelled as a step input in collective pitch. Figures 22 and 23 

depict clearly that, if the blade is in stable configuration, coupling between rotor speed, blade 

twist and flap return have strong auto-stabilizing characteristics. The rotor speed recovers even if 

the magnitude of the disturbance is relatively high. Computations have also demonstrated that the 

rotor is not able to reach steady autorotation if rotor speed is too low. The highest twist deflection 

leads to significant decrease of rotor speed that results in stall of significant part of the blade. 

Stable autorotation is not re-established since the lift drops and drag increases considerably 

behind the stall point. 

 

iii) Blade tip mass 

 

Blade tip mass is frequently used to increase moment of inertia of gyroplane rotor blades. Higher 

moment of inertia further improves the stability of autorotation and therefore decreases 

probability of abrupt loss of rotor speed due to a gust or poor piloting. Computation for several 

different values of blade tip mass were undertaken to establish how sensitive autorotative state is 

to changes in this parameter. The concentrated mass was placed at the local elastic axis in order 

not to affect blade pitch dynamics. The outcome of the simulations is shown in Fig.24. It can be 

seen that the tip mass increases rotor speed as anticipated.  

 

Results of the simulations have demonstrated that the effect of coupling between blade twist and 

rotor speed is very significant due to strong influence of blade incidence angle on both torque and 

thrust of the blade. Therefore, the conclusion can be drawn that the value of blade torsional 

stiffness is the key parameter of any gyroplane blade design. Together with chord-wise location 

of the elastic axis and centre of gravity, flexural stiffness has the decisive effect on aeroelastic 

stability of a rotor in autorotation. Further investigations have shown that blade flexural stiffness 

plays rather inferior role in this case due to centrifugal stiffening. 

 

4.3. Stability boundary 

 

In order to investigate rotor stability boundary in torsion, simulations for various torsional 

stiffness, chord-wise positions of centre of gravity (CG) and chord-wise positions of elastic axis 

(EA) were carried out.  

 

The results of the simulations have revealed that low torsional stiffness of the blade leads to an 

aeroelastic instability (flutter) that comes through as coupled rotor speed / pitch / flap oscillations 

(see Fig.25 and 26). These oscillations result in catastrophic decrease of rotor speed as is shown 

in Fig.26. Reduction of rotor speed from a steady value to zero takes only few seconds and the 

speed of descent increases to unacceptable value during this time. This type of flutter seems to be 

unique for rotor in autorotation since it differs from both helicopter rotor flutter and flutter of a 

fixed wing.  
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It can be seen from figures 27 and 28 that position of CG aft EA is destabilizing, which agrees 

both with theory of aeroelasticity and experiments. Chord-wise position of CG seems to have 

much stronger influence on the stability of autorotation than chord-wise position of EA. It is 

probably caused by the fact that the offset of aerodynamic centre (AC) from EA (i.e. the arm of 

forcing torsional moment) is another factor influencing stability the shape of boundary and it is a 

function of chord-wise location of EA.  

 
c AC EA

g CG EA

y y y

y y y

= −

= −
 (4.3) 

 

All results of the investigations can be summarised in 3-D chart that comprises change of the 

stability boundary due to both variation of CG position and variation of EA position (see Fig. 29 

and 30). 
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5. SIMULATION OF AUTOROTATIVE FORWARD FLIGHT 
 

Since gyroplanes operate mostly in forward flight regime, modelling of forward autorotative 

flight represents the key task in investigation of aeroelastic behaviour of a gyroplane rotor blade. 

In comparison to the simulation of axial autorotative flight, simulation of forward flight in 

autorotation induces some complication. Both direction and value of the inflow velocity are 

functions of azimuth if horizontal speed is not zero (see equations ). This means that there is no 

torque equilibrium during steady forward flight and the value of torque oscillates around the zero 

value (see Fig.31). The amount of vibrations induced by the rotor blade during steady forward 

flight is therefore significantly higher than in axial descent. In addition, free-stream velocity at 

the advancing side of the rotor disc is higher, and thus the values of the forcing moments are 

higher too. It can be expected that gyroplane rotor blade in the forward flight regime is more 

prone to undergo aeroelastic instability than the same blade during axial autorotative flight. 

 

i) Chord-wise position of CG and EA 

 

Computations carried out with the aid of the latest version of the AMRA model have shown that 

the rotor suffers of aeroelastic instability if CG lies aft EA. The model has also predicted that 

fixed incidence angle of the blade (collective pitch) has very strong influence on shape of 

torsional stability boundary. In order to gain more knowledge about the problem, parametric 

study focused on the effect of position of blade CG and EA was performed. Computations for EA 

at 35%c and different chord-wise locations of CG and values of torsional stiffness kθ were 

undertaken. Since most of parameters in forward autorotative flight have harmonic behaviour, the 

results are presented in the form of boundaries of their trends. This approach allows comparison 

of multiple data sets in one plot. Figures 31 and 32 show an example of results of the simulations 

obtained from forward autorotative flight in stable configuration (Vh = 50m/s, CG ahead of EA). 

Comparison of time behaviours of rotor speed of a rotor blade in unstable configuration (CG at 

45%c and EA at 35%c) during autorotative axial descent and forward flight is depicted in Fig.33. 

Blade incidence angle is set to 0.04rad for both axial flight and forward flight. Note that in the 

case of axial descent, the instability occurs at much lower torsional stiffness than during forward 

flight. In forward flight, instability develops even for value of realistic torsional stiffness obtained 

during experimental measurements of blade structural properties (kθ = 1600N.m
2
/rad). Figures 34 

- 37 compare estimations of the behaviour of the rotor during forward flight for zero blade 

incidence angle and blade incidence angle θc = 0.04rad. The influence of blade incidence in 

forward autorotative flight seems to be even stronger than during axial descent. Stability 

boundaries obtained for forward flight regime are given in Fig. 35 and 37. Corresponding data for 

autorotative vertical flight can be found in Fig.27. The Results of the simulations clearly show 

that hte auto-stabilising effect of pitch-flap-rotor speed coupling is relatively strong during axial 

descent, but is suppressed by flow-induced oscillations in forward flight.  

 

ii) Blade fixed incidence angle 

 

Figures 38 and 39 show results of a series of simulations to investigate the effect of blade 

incidence angle alone (without change of chord-wise location of CG). Again, blade incidence 

angle seems to have a strongly destabilizing effect. Another set of calculations was carried out for 

different values of horizontal speed. It can be seen from Fig.40 and 41 that both flapping and 

torsion of the blade increases with rise of horizontal speed. Rotor speed, however, does not 

change since the configuration of the rotor remains unchanged.  
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6. CONCLUSIONS 

 

An aeromechanical model of a gyroplane rotor AMRA was developed and used in predicting the 

aeroelastic behaviour of a rotor. Both regimes were investigated – autorotative axial flight 

(vertical descent) and forward flight in autorotation. Simulations have shown that autorotation is 

a complex aeromechanical process with auto-stabilizing characteristics. It was found that blade 

twist / rotor speed coupling has major effect on stability of autorotation when the rotor is in a 

stable configuration. 

 

In order to obtain input parameters for the structural model of the blade, a series of experimental 

measurements were carried out. Blade mass distribution, position of elastic axis, span-wise 

distribution of CG and torsional and flexural stiffness was determined during the experiments. 

 

Results from the AMRA model were verified and found to be in a good agreement with both 

existing theory of aeroelasticity and experimental measurements. Several parametric studies were 

performed so as to gain more knowledge on the effect of blade geometry and structural properties 

on performance of the rotor during autorotation. 

 

Occurrence of a type of flutter that is unique for autorotating rotor was discovered during 

simulation of unsteady axial descent in autorotation. This aeroelastic instability is driven by blade 

pitch / flap / rotor speed coupling and differs from both flutter of a helicopter rotor and flutter of a 

fixed wing. The instability results in catastrophic decrease of the rotor speed and significant 

increase of speed of descent.  

 

Preliminary results of simulation of gyroplane rotor in forward flight were obtained and analysed. 

The AMRA model suggests that positive blade twist has adverse effect on performance of the 

rotor during autorotative forward flight. Very low positive or zero fixed blade incidence angle 

and moderate amount of blade tip mass seem to be beneficial for performance of a rotor in 

autorotation. Low negative value of blade linear twist can also improve its behaviour as it 

decreases angle of attack of the outboard part of the blade which is the source of negative torque 

during autorotation. 

 

More powerful structural model of gyroplane blade that will utilise finite element method (FEM) 

will be developed in the next stage of the project. It will be coupled with RASCAL advanced 

rotor blade aerodynamic model developed by Dr Houston from Department of Aerospace 

Engineering, University of Glasgow.
20
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Figure 1 – General arrangement of the autogiro rotor blade model. 

 

 

 

 

 

 

 
Figure 2 – Relation of blade twist, flap and inflow angle 
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Figure 3 – Trends of NACA 0012 lift coefficient obtained for different values of Mach number. 

 

 
Figure 4 - Trends of NACA 0012 drag coefficient obtained for different values of Mach number. 

 
Figure 5 – Induced velocity relations in vertical flight (speed of climb on the x-axis, induced velocity on the y-axis). 

Reproduced from Ref. 23. 
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Figure 6 – Experimental data on relation of 1/f and 1/F. 

 

 

 

 

 

 

 
 

Figure 7 – Definition of ‘local’ lift curve slope. 
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Figure 8 – Arrangement of the blade model. 

 

 
 

Figure 9 – Internal structure of the rotor blade from Montgomerie-Parsons research autogiro. Left section comes 

from the root of the blade while the right one was located close to the tip of the rotor blade. 

 

 
Figure 10 – Span-wise mass distribution of the blade. The total weight of one blade was 11.95kg. 
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Figure 11 – Span-wise distribution of blade CG. 

 

 
 

Figure 12 – Arrangement of the experimental measurements of EA position and torsional stiffness of the blade. 

 
Figure 13 – Dependence of blade twist upon torsional loading at three span-wise stations. 
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Figure 14 – Stabilization of rotor speed and corresponding torque equilibrium during steady axial autorotative 

flight. 

 
Figure 15 – Time behaviour of rotor speed for different lengths of pre-rotation. 

 

 
Figure 16 – Trends of thrust and speed of descent during steady autorotative descent. Plot on the left shows thrust of 

one blade only, so the value of thrust has to be multiplied by two to obtain total rotor thrust (the rotor is two-bladed). 
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Figure 17 – Span-wise distribution of torque during steady autorotation. The right-hand side figure was published in 

Ref. 14 and Ref. 16. 

 

 
Figure 18 – Comparison of values of resultant force coefficient as a function of rotor disc angle of attack obtained 

by experimental flight measurements (left) and value of cR predicted by the simulation for axial flight (i.e. αD = 

90deg) and zero blade incidence angle. 

 

 
Figure 19 – Comparison of autorotational diagram that was introduced by Vimperis

14
 (right) and results of the 

simulation. 
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Figure 20 – Rotor speeds and velocities of descent for several collective pitch settings; stable configurations on the 

left. Plot on the right-hand side shows rapid increase of speed of descent that occurs when the configuration is 

unstable. As it can be seen from the previous figure, rotor speed drops to zero in 9 seconds. 

 

 
Figure 21 – Trends of rotor speed for several values of positive linear blade twist (left) and negative linear blade 

twist (right). 

 

 
Figure 22 – Three different types of twist disturbance that were used during testing of the model. 
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Figure 23 – Recovery of rotor speed after three different pitch perturbations. 

 

 
Figure 24 – Trends of rotor speed and speed of descent obtained for five different values of blade tip mass. 

 

 
Figure 25 – Flap oscillation during unstable axial autorotative flight. Calculated for kθ = 300N.m

2
/rad. 
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Figure 26 – Oscillation in pitch that occur during unstable axial autorotative flight. Calculated for kθ = 

300N.m
2
/rad. 

 
Figure 27 – Stability boundaries in torsion for different chord-wise positions of CG and EA. 

 

 
Figure 28 - Stability boundaries in torsion for different chord-wise positions of CG and EA. 
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Figure 29 – Graphical interpretation of the parametric study on torsional stability boundary of a rotor in 

autorotative axial flight. 

 

 

 

 

 
Figure 30 - Graphical interpretation of the parametric study on torsional stability boundary of a rotor in 

autorotative axial flight. 
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Figure 31 – Rotor speed and blade flap angle in stable forward flight. 

 

 
Figure 32 – Blade twist and speed of descent of an autogiro during stable forward flight. 

 

 
Figure 33 – Comparison of aeroelastic behaviour of a gyroplane rotor blade in axial descent (left) and forward 

flight (right). Both calculations were accomplished for the blade in unstable configuration (CG aft EA). 
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Figure 34  - Behaviour of rotor speed and flapping angle during autorotative forward flight for zero blade incidence 

angle and different chord-wise positions of CG. The torsional stiffness is 1600N.m
2
/rad. 

 

 
Figure 35 - Behaviour of rotor speed and flapping angle during autorotative forward flight for zero blade incidence 

angle and different chord-wise positions of CG. The torsional stiffness is 1600N.m
2
/rad. The right-hand side plot 

shows the stability boundary in torsion for the given blade incidence angle. 

 

 

 
Figure 36 - Behaviour of rotor speed and flapping angle during autorotative forward flight for blade incidence angle 

of 0.04 rad and different chord-wise positions of CG. The torsional stiffness is 1600N.m
2
/rad. 
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Figure 37 - Behaviour of rotor speed and flapping angle during autorotative forward flight for blade incidence angle 

of 0.04rad and different chord-wise positions of CG. The torsional stiffness is 1600N.m
2
/rad. The right-hand side 

plot shows the stability boundary in torsion for the given blade incidence angle. 

 

 
Figure 38 – The effect of blade incidence angle (collective pitch) on aeroelastic behaviour of a gyroplane rotor in 

forward flight. 

 

 
Figure 39 – Twist of the blade obtained for different values of blade incidence angle (i.e. collective pitch). 
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Figure 40 – The effect of the value of forward speed on rotor speed and flapping angle of the blade. 

 

 
Figure 41 – Blade twist and values of speed of descent for different values of forward speed. 
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