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ABSTRACT

A Galerkin finite element method for the spatial discretization of the
nonlineer, nonselfadjoint, partial differential equatlons governing rctary-
wing aeroelasticity 1s presented. This method reduces algebraic manipulative
labor significantly when compared to the global Galerkin method based on
assumed modes. Furthermore, the Galerkin finite element method is ideally
sulted to treat rotor blades with discontinuous mass and stiffness distribu-
tion and structurally redundant configurations as they appear in bearingless
rotors. Implementation of the method is Illustrated for the coupled flap-lag
gsercelastic problem of hingeless rotor blades in hover and forward flight.
Numerical results for stability and response 1llustrate the numerical proper-
tles and convergence behavior of the method. It is concluded that the
Galerkin finite element method 1s a practical tool for solving rotary-wing
aercelestic stability and response problems.

1. Introduction

Increasing demands on helicopter performence and improved reliability
and maintainability have led to the development of hingeless rotor systems and
more recently to bearingless rotors. These systems are charascterized by the
elimination of flap and lag hinges and, for the bearingless rotor, the
replacement of the pitch change bearing through an elastically twisted member
which is commonly denoted as the flexbeam. Such rotor systems are designed by
utlilizing composites for the blade and flexbeem construction. A considerable
amount of research has been directed toward the aerocelastic analysis gf these
rotors,l both for isolated blade2‘7 and coupled rotor fuselage models. -11

Depending on the complexity of the analysis, the elastic properties of
the blade have been modeled with & verying degree of sophlstication. Most
isolated blade analyses in forward flight and coupled rotor fuse%aﬁesagalyses
rely on equivslent-hinge, spring-restrained, rigid blade models.-?"2%~?7 When
elagtic blade deformertions are included, the dynamic equations of motion
appear in partisl differentisl form. Typically, Galerkin's method, based on

*
Presently, Dynamics Engineer, Hughes Helicopters, Culver Clty, California
¥This research was supported by the Structures Laboratory AVRADCOM Research
and Technology ILeboratories and NASA Langley Research Center, Heampton,
Virginia, under NASA Grant NSG-1578.

15-1



mode shapes of the rotating blade, which are generated from the exact modes
of a nonrotating, uniform beam, is used to eliminate the spatial depend-
encel,2,5,6 .

To fully understand the restrictions associated with this approech,
the following aspects of rotary-wing aeroelasticity have to be kept in mind.
The blade equaticns should be based on moderate deflection theory which leads
to geometrle nonlinearities 1in the structural, inertia and aerodynamic operea-
tors. Forward flight effects introduce periodic coefficients inte the equa-~
tions. Thus, to obtain actual seroelastic stabllity boundaries, the equations
are linearized about an appropriate equilibrium position and stability informa-
tion is extracted from the eigendats associated with the linearized system.
In forward flight the equilibrium position is periodic in time and depends on
the trim state. Stability information is cbtained through Floguet theory.

From the inspection of typical studie52’6 it is clear that methods of
solukion based upon the modal Galerkin methed lead to extremely cumbersome
algebraic menipulations which have 1o be carried out manuelly or by alterna-
tive means such as slgebraic manipuletive systems. Thils complexity increases
even further when more than one mode for each elastic degree of freedom is
included in the analysis. Purthermore, the discontinuous mesg and stiffness
distribution and redundant construction of bearingless rotors' is not amen-
able to modeling by the Galerkip modal method as described sbove., One either
has to resort to matrix methods(s1¥ or use of mode shapes obtained through a
finite element analysis.

Recognizing the need for a discretizetion tool which overcomes the
limitations of the modal Gelerkin meghog, an extensive study was conductedl?
to develop & local Galerkin method,l”” leading to a finite element formu=-
lation of the rotary-wing aerocelastic problem. This method enables one to
discretize the partial differentisl equations of motion directly, and conse-
quently, & significant reduction in the algebraic manipulative labor required
for the sclution of the problem is accomplished. Furthermore, this Galerkin
finite element method allows & unified treatmwent of gtructursl and inertie,
as well as serodynamlc terms. A normal mode coordinate transformetion
reduces the number of finite element nodal degrees of freedom considerably,
however, without placing any restrictions on the number of modal coordinates
retained. lLastly, this methed is ideally suited for the incorporation of
flexbeam dynamlics into the aeroelastic analysis and the treatment of point
masses and springs.

The general formulation of this Galerkin finite element method and
its application to flap~lag dynagics of hingeless rotor blades in hover
have been published previously.l The present peper concentrates on the
following objectives: 1) The finite element formulation of the rotary-wing
aeroelastic problem is extended to the flap-lag-torsion case_in forward
flight; 2) A newly developed quasilinearization technique,l? for calculat-
ing the nonlinear periodic response, sbout which the equations are linear-
ized, is shown to be compatible with the finite element formulation. Further-
more, within the context of the flap-lag problem in forwerd flight, the
convergence of the method is established by numerical experimentation; and
3) The numerical properties and convergence behavior of the Galerkin finite
element method are illustrated by spplying it to the coupled flap-lag aerog-
elastlc stability and response problem of hingeless blades in forward flight.
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2. Equations of Motion

The blade equations of motion for the flepelag torsion problem in
forward flight are coupled nonlinear, nonconservative, partial gifferential
equations with periecdic coeffjclents. The structural cpera.torl and the
inertia and serodynamic loads® have been derived previocusly. Therefore,
only scme of the basic assumptions underlying the derivetion and the final
form of the equatlons of motion and corresponding boundary conditions will be
presented here, in as much as they are needed to illustrate the implementation
of the Galerkin finite element method. Additional details can be found in
Reference 12.

The geometry of the problem is described in Figures la and 1b. The
basic agsumptions in the derivation pertaining to hover have been presented
in Reference 16; additional assumptions introduced in the present derivation
are:

1) The helicopter is in straight, steady flight at constant speed
(= 0). Rotor shaft dynamics are not considered (ﬁ =0),

2) Root torsional deformation due to pitch link or control system
flexibility cccurs about the feathering axis.

3) The aerodynamic center, center of gravity and elastic center are

digtinet points. The tension center coincides with the elastlce
center (xII = 0}, The undeformed elastic axis is assumed to be a

straight line and ceoincident with the feathering axis.

L) The blade is pretwisted, 0y(%,), about the undeformed elastic
axis.

5) The elastic torsional deformations occur about the deformed
elastic axis.

6) Cross-sectional stiffness and inertis properties, offsets, and
airfoil chord vary along the blade.

7) Structural or mechanicel damping of viscous type is included.
8) Reversed flow is modeled in an exact manner.
9) Aerodynamic effects associated with forward flight introduce

cyclic pitch veriations; thus, the total geometric pitech angle
is given by

cos ¥ . (1)

OG(xO,w) = OB(xO) + 00 + 915 sin v + Olc

10} The inflow is represented by the following general functional
form

AMx,¥) = Ao kp(R) + A, Ky (%) sin ¥+ A k3(§) cos ¥ . (2)
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It should be pointed out that the influence of axisl forces on the
torsicnal rigidity of the rotor blade and the effect of cross-sectional
warping due to torsion was neglected in Reference 18. The proper terms for
this effect have recently become avallsble.l9,20 Furthermore, the effects of
stall and compressibility are not included in the serodynamic loads of Refer-
ence 6. Although the above effects may be important for certain blades and
certain flight conditions, no attempt was made to include them in the present
study, since its primary objJective is the application of the Galerkin finite
element method.

Using the above assumptions, the coupled equations of motion for
forward flight becomel?

Axial equilibrium:

T,x+ Py = o . (3)

Lag equilibrium:

-(MB’x-+ GJ é,x Vo~ Vox T),x - q51,x'+ Pyr+ Pyp * Byp = 0 . {(h)

Flep equilibrium:
(Mé,x+GJ $,x v,xx+ w,x T),x'+ qZI,x+ Ppr* Ppp* Py o . (5)

Torsion equilibrium:

MVt 1% %at % = O - (6)

The corresponding boundary conditions at the free end, ib =1, are

natural boundary conditions, expressing the fact that the shears, moments and
tension at the blade tip are zero. At the cantilevered blade root, Xy = o,

the bending displacements and slopes (gecmetric guantities) are zero. The
root torslonal spring leeds to a mixed boundary condition for torsion. Thus,

2t %, =0 TeF=F =W =0, (7)
M, - Ky o= 0 . (8)
at xO =3 -ME,X - $’x ,xx+ v,xT - q5I,x =0 ? (9)
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M%,x * $,x Vo xx * Vox T- q21,:: =0, (10)
My = -M, = M =0 ) (11)

T = 0 . (12)

Equations (3} - (12) are written in a general form which is most suit-
able when using the Galerkin finite element method to discretize the spatial
dependence. Detailed expresasiona for the elastle moments (vending - Ml’Mé’MB
and torsion - M_) and the distributed loads (forces - p and moments - g,
vhere lnertisa; aerodynamic and structural damping contributions are denoted
by subscripts I, A, and D, respectively) are given in Reference 12. The
tension T will be eliminated by using the axial equation (3) and correspond-
ing boundary condition (12). The axial displacement, u, will be replaced,
using the commonly made assumption that the blade i1s inextensional in the
axial direction. Thus, Equations (4) - (11) completely define the aercelastic
stabllity and response problem.

5. Application of the Galerkin Finite Element Metheod

The first step in solving the equetions of motion, presented in the
previous section, is the discretization of the spatial dependence. This 1s
accomplished using a local Galerkin method of weighted residuals, resulting
in a finite element formulation of the problem.

A detailed description of this Galerkin finite element method and its
application to the flap-lag problem in hover have been presented in References
12 and 16. Therefore, only the major steps will be outlined here. However,
special emphasis is placed on the appropriate modeling of the torsional degree
of freedom.

First, an approximete global solution is substituted into the flap-lag-
torsion equatlons of motion, Equations (4) - (6), and the corresponding bound-
ary conditlons. Recall, that in the extended Galerkin method the shape func-
tions Qm need to satlisfy cnly the geometrlc boundery conditions. Therefore,
both the natural boundary conditions at the blade tip, Equations (9) - (11),
and the mixed boundary condition, due to the root torsional spring, Equaticn
(8), contribute to the boundary residual. The weighted Galerkin residual,
obtained through appropriate combination of the weighted differential equation
and boundary condition residusls is integrated by parts. After cancelling
boundary terms, the problem is posed in the following integral form:

= - = A g

J’l (o 1T ol . gi’x"m+f’x? o1

0] m]sxx -ME * [mlsx 1 X 2 XX - W,x T qEI S
0 M
X

) g

+ + 0
Tl { Part Paat Ppp %ot By ) S = 0. (13)
Myt et t O ch"i’ =
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Second, the global domain is divided into a number of subdomains or
elements. In the Interior of each element the displecements are assumed to
be of the form

¥ Yoo 9 n®
@) = ¢ # o = o 1 ¢ g’
$e 2 Q ;T ge

= [¥(x, )1 (2°(¥)} . (14)

For bending, the same cubic Hermite interpolation polynomials as in
the hover case are used, see Appendix B. The nodal psrameters are the lag
and flap displacements and slopes at the element boundaries, see Figure 1b.
This element satisfies the requirement of C3 continulty of the global
solution, since it provides interelement continuity for bending displace-
ments and slopes. 3Bending strains vary linearly within the element which
goes beyond the minimum requirement of constant strain within the element.

The torsion equation of motion is of second order with respect to
the spatial varisble. Thus, & linear interpolation will achieve the reguired
CO continuity and constant strain. However, in the coupled bending-torsion
analysis, it is desirable to use a torsion element which provides the same
accuracy as the bending element. This allows discretization of the torsion-
al varieble with the same number of elements as needed for the adequate
modeling of bending. In the present analysis, an improved torsion element,
providing linear variation of torsional strain, is obtained by using the
torsion deformetion at the element mid-point as additional nodal parameter.
Thus, N =3, and the ¢ are quadratic interpolation polynomials,?
given in Appendix B.

Figure 2 shows the relative accuracy of the finite element sclutlon,
a8 compared to-the exact solution, for the first three bending and torsion
frequencies of a nonrctating uniform beam. It iz apparent thet the cubic
interpolation hending element and the guadratic interpolation torsion element
provide approximately the same accuracy. The performance of the linear
interpolation torsion element is considersbly inferior. All elements exhibit
uniform convergence, which had to be expected, since the finite element model
for this conservative problem can be derived from a variational principle.

In general, refined finite elements can be cobtained using any number
of internal nodes. An alternative approach is the use of higher-order
derivatives (second for bending and first for torsion, or higher) as nodel
parameters. These higher-order elements, however, experience difficulties
in modeling concentrated loads. Furthermore, the boundary conditionsg
involving the higher-order derivatives must be satisfied. Therefore, such

15-6



elements were not considered.

In conclusion, it can be stated that the elements selected in the
present study are the most basic (or simple) elements which yield a con-
sistent formulation for coupled bending and torsion. Thls takes on an
additional significance in light of the large number of nonlinear ferms
which have to be modeled. The exact form of the element interpolation poly-
nomials Y, 7O, and ¢ is given in Appendix B.

The element displecements, Equation (14), are now extended over the
global domain, by defining them as zero outside the pearticular element with
which they are associated. Substituting the element displacements into the
integrated Galerkin residual, given by Equation (13), yields the nonlinear,
periodic element equations.

([13] + [15(a®)) { 3%}

+

([ci] + (05} + (D51 + [5(a®)) + [T5(a%)1 - [cf (a®)] + [cF, (8°)]

+ [Dp, (&%) + [D;Z@,gen; (ng(a®)] + [Dg(ge)]) (%)

E. e=1
c () e - ) ket )t
i=e+tl i=1
,

<[B§1 e 125) 05T+ (3] + [S(a%)] + [K5(a%)] + [AS(e®)1+ A5(a%)) )

(a%) + {F;} + {Fi} + [Bi'][a.l} 8, = 0 for e=12,..,E . (15)

Detailed expressions for all element matrices in Equation (15), indi-
cated by the superscript e, are defined in Reference %2 The structural
operator is associated with the matrices [B 1 and | » The axial tension

results in the contributions represented by {T 1, Tg] &nd [T 1. The
inertia loads sre included in [I;], (3], [C] ], (g1, K1, KZL F3)

[C ] and [CAl] where the lest two matrices ere due to the axial shorten-
1n§ Xeffect. The aerodynamlc loads are contained in the [Di], [Dg}, [Dgzl,
(D ]: [D3 1, [A 1, [AS1, [AS] and {F ]} matriceg. The structural damping

effect is represented by B Finally, the [Bc] matrix accounts for the

root torsional condition, where the Kronecker delts, bel’ indicates that

15-7



this term is only present in the first element, 1l.e., the element at the root
of the blade.

The functional dependence of the element matrices on the nedal dis-
placements is as indicated in Equation (15). Note, that the matrices in
Equetion (15) have both single and double numerical subscripts. The first
subscript iz an identifier of nonlinear terms. A first subscript having a
value of 2 or 3 is indicative of quadratic or cubic terms, respectively.
A second subscript is attached to all velocity-dependent element matrices.
All element matrices are evaluated using six-point Gaussian quadrature. The
nonuniform element properties are included in the mumerical integration.

Next, the element matrices are assembled into the complete system
matrices. The nodal parameters within the nonlinear element matrices are
replaced by their modal representation,

{a} = (4] {q} , (16)

using ML lag, MF flap, and MT torsion free vibration mode shapes of

the rotating blade which are computed using the finite element method.
Subseguently, the modal reduction process is completed by pre- and post-
multiplying the system matrices with the modal transformation matrix, [(A],
and its transpose. For more detalls regarding the treatment of nonlinear
terms, see Reference 12.

The final equations of motion, in terms of the reduced set of M
modal degrees of freedom, can be written symbolically as:

G=Mm(a){a}+ (alg, DI al+ k) a}+{£}=0 . (17)

A1l matrices in Equation (17) are defined in Reference 12. Note, that the
inertia, damping, and stiffness terms have both linear and nonlinear contri-
butions. Also recall, that for forward flight, most watrices have periodic
coefficients, i.e.,

E(Q:é:.‘isﬂf) = g(q,i:ﬁ,‘“'?‘ﬁ’) ?

with the common period being 2w, which corresponds to one blade revolution.

k., Method of Solution

In forward flight the aeroelastic stabllity and response of isoclated
rotor blades is strongly coupled with the overall equilibrium of the heli-
copter.1:3,5 The trim state of the helicopter, obtained using either the
propulsive or moment trim procedures developed in Reference 17, is used as
input to the aerocelastic analysis of the blade.
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A solution to Equation (17) must provide both stability and response
information. Finite element sclutions to nonlinear dynamic problems are
meinly restricted to finding the transient response under impulse loeding.
Instead of relying on a direct nuvmerical integration, with its known draw-
backs for equations with perlodic coefficients, in the present study the
aeroelastic stability of the blade is obtained expllcitly from eigendata
extracted from the linearized system. The approximste nonlinear steady-
state response of the blade 1s used as equilibrium position about which the
perturbation equations are linearized. This nonlinear, time dependent equi-
librium position is evaluated by lterstive application of a method developed

to obtain the steady-state response of linear periodic systems.l7

A brief

description of this procedure, emphasizing the finite element formulation

of the problem follows.

First, the finite element equations (17) are expanded in a Teylor
series about a previous solution, keeping only linear terms. During the

k-th iteration step, the previous solution is denoted by qk‘l. This
solution must be periodic in V¥ and its derivatives &= t1,~ g1 4

known. The linearized equations now take the form:

Dl W oo [ ol S Aol

- ey L I N e (Y =0,

where
] = ?_ff-' (¢*"1)
-
(] = ;% (23-1, )
551 = % (gk—l,é-l,.gk-l)
] = e, &N ¢ k@ N + 12

(18)

(19a)

(19v)

(19¢)

(194)

Details on the evaluation of the derivatives of G can be found in Refer-
ence 12. For convenient numerical treatment, Equation (18) is transformed

into first-order state variable form.
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k

g
G =
X
g
= S, L I - G, W (20)
where
1V Rl (o B B P R
A% = | , (21)
(1] | (o]
1R + 8RN - P
{bk] = . (22)

{0}

Both {Ak] and {bk} aielperiodic in ¥ (with period 27) and depend on
the previous solution y .

The solution of the linearized Equation (20), i.e., the k-th iter-
ative periodlic response yk(w), is calculated by determining the initial
conditions y (0} required for time-history integration, to yield a .
periodic iesponse-zz Numerical integration of Equation (20) using y (0)
yields y (¥). The periodicity of the response is checked by integrating
over several periods (i.e., blade revolutions) until the Fourier coeffi-
cients of the response obtained in two subsequent periods agree within a
desired accuracy.

This periodic response, xk, is then uged az a2 previcus solution
for the next iteration step. . This process is continued until convergence
is achieved, at which step Y represents the periodic_steady-state
response of the nonlinear system, which is denoted as » This solution
is then used as the equilibrium position for the atability calculations.

In the present study, two options for initiating the guasilineari-
zation process were implemented. Stability informestion in forward flight
is usually plotted as & function of the advance ratio . Therefore, at a
given value of W, either the linear response of the system (with all
nonlinear terms deleted), or the nonlinear response for & previous lower
value of | was used as initial sclution.

Stability was studied by deriving linearized perturbation equations
about the known equilibrium position y(¥). This leads to a linear,
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homogeneous perlodic system.

o5} = G, 3, VI (23)

where [A] is defined by Equation (21) with k-1 replaced by y. Accord-
ing to Floquet theory, the charecteristic exponents, %k = Qk-+ ﬂﬁk, of the

associated transitioi Eatrix at the end of one period, [®(27)], are indi-
cative of stability.>?? The linearized system, Equation (23), is stable when
;1( < 0 for all k.

At this point it should be pointed out that for each time step in the
numerical integration of Equation (20) and in the calculation of the transi-
tion matrix, the finite element discretization process, i.e., formulation of
Equations (15), (17), (18) and (20) has to be repeated. Efficient progra?-
ming and use of efficient wmethods to calculate stability and responsel I

is, therefore, crucial for the effective treatment of this problem.

5. Results and Discussion

Results in the present peper illustrate the application of the Galerkin
finite element method to rotary-wing serocelsstic prcblems in forward flight.
The bending free vibratlon problem of & cantilever rotating beam and the
coupled flap-lag sercelastic stability of hingeless rotor bladee in hover were
considered in Reference 16. Figure 3 shows typlcal stability boundaries for
flap-lag in hover. It also illustrates the excellent egreement obtained with
the Gelerkin finite element method and the modal Galerkin method. These and
other resultsl® ghowed the Galerkin finite element method to be a practical
tool for formulating and solving rotary-wing aerocelasstic problems. It was
concluded that four or five elements sre sufficient to model the bending
dynamics in hover and that for certain configuratlons, stablility is determined
by the second lag mode. .

5.1 Assumptions and Data Used in Generating Results

Results for forward flight deal with the coupled flap-lag aercelastic
problem of hingeless rotors. In view of the novel featuresz of the present
research, where'a finite element solution 1s given for the stability and re~
sponse of nonlinear, nonconservative, periodic systems, torsional dynamics
were excluded in the computer code.

Numerical results are presented in two groups. First, the numerical
properties of the solution procedure for the discretized dynamic equations,
outlined in Section 4, are investiggted. These results, presented in Figures
b - 9, are based on propulsive trim’ with a weight coefficient of C; = 0.01
and the following data:

= 1.417; aFl = 1,087; b = 0.0313; 7Y

It

L1 503

c =005 ; B =23 ; M=2 ; R 1.0,
The second group of results, presented in Figures 10 ~ 18, deals with
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the convergence properties of the Galerkin finite element method. Response
plots show the converged nonlinear steady-state response which is subse-
quently used in the linesarized stabllity analysis. Trim values sre calcu-
lated using the improved propulsive trim procedure of Reference 17, with

= 0.05 (0.01) and the fuselage pitching moment and the variocus trim off-
sets set to zero. The configuration parameters, chosen so that the soft in-
plane blade has properties somewhet similar to those of the Boelkow BO-105
rotor,zh are:

g1
|

-2
{

= 5.5; 0 = 0.07; Npsi = Nrki = 603 Nh = 10.

Parameters vhich remained unchanged for all forward flight results
are.

= 3 5 H = H = *
oy = 1.23 kg/m” (0.00238 slugs/ft”); a = 2W; Cdo CDP = 0.01;

KL=O°O;xU=l.0;el=Bp=xA='YF=O.O;ﬂSLGSon'o'

Furthermore, blade pretwist wes set to zero and the blade properties were
assumed to be uniform over the span. The inflow was modeled to be uniform,
i.e.,

»
[}

A= WU tan + ! .
0 “r PR
2 o+ )O

5.2 Results

The first group of results, presented in Figures 4 through 9, is
intended to illustrate the effect of the numerical parameters associated with
the guasilinearization techniquel7 outlined in Section k., PFigures b4 and 5
show the effect of the number of harmonics, Kh, used in the Fourier series
representation of the periodic blade response. The blade tip displacements,
normalized with respect to the length of the elastic portion of the blade,
are plotted. While the lag response, Figure 4, changes only & little
when using ten as compared to one harmonic, & notlceable change can be seen
for the_flap response in Figure 5. This is also reflected in the stebility
results™, in as much as the flap damping changes remarkebly with the number
of harmonics, whereas the lag damping remains basically unchanged. Inspec-
tion of the Fouriler coefficients of the response plotted in Figures L and 5
showed that while it is essentisl to retain more than the first harmonics,
it probebly would be sufficient to use the first four hermonics. These
results clearly illustrate that analyses using the harmonic balance
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technique with only the first harmonice to calculate the time-dependent equili-
brium position3:6 can lesd to inaccurate predictions of system damping. In all
subsequent calculations, ten harmonics (Nh = 10) were used.

Figures 6 through 8 illustrate the effect of nonlinear terms on system
steady-state response and stebility. Hesponse results are shown with the
number of quasilinearizetion stepa, Xk, as parameter. The lag response,
Figure 6, and more so the flap response, Figure T, change noticeably when going
from the linear solution (all nonlinear terms neglected%, k =0, to the
linearized solution, k = 1. When performing an additional iteration step,
i.e., considering an approximetion to the fully nonlinear solution, k =2,
the response remeins practically unchenged. This implles that the linearized
response is a sufficiently accurate representation of the converged nonlinear
response.

Figure B shows the convergence of the real part of the characteristic
exponents, a measure of stability, with the number of gquasilinearization steps.
A decrease in percentage error value corresponds to a decrease in stability
mergin. Analysis of the linear system (k = O, i.e., all nonlinear terms
neglected) will generally lead to large errors in the predicted damping values.
In particular, this holds for the lag degree of freedom which is affected
considerably by nonlinear aercelastic coupling terms. At intermediste advance
ratios, W = 0.2, one iteration step (k = 1, i.e., linearization about the
linear equilibrium position) 1s sufficient. At high advence ratios, K = 0.k,
a second iteration step (kX =2, i.e., linearization about the linearized
equilibrium position) might be required to predict system stability. The
larger error, at k = 1, for the flap degree of freedom, as compared with
lag, can be directly related to the effect of nonlinear terms on the flap
response as shown in Figure 7. It should be polnted out, however, that the
influence of nonlinearities in this particular case is somewhat exaggerated due
to the high value of the weight coefficient (CW = 0.01).

In Figure 9 the effect of the number of azimuthal steps on system
stability is shown. In all cases the same number of steps (per revolution)
was used to calculate the initial conditions and stability, N » and to
determine the response by numerical integration, Nrki' The.rgi&tive change
of the real part of the characteristic exponents at [L = 0.4 1s plotted.

The solution, with 120 steps, was used as reference. Note that the flap
degree of freedom does not have complex conjugate exponents, i.e., two dis-
tinet resl parts are associated with 1t. Overall, results based on forty
steps are in excellent agreement. (The same was concluded for response,
although the results are not shown.) Even twenty steps gilve only one percent
error. In all subsequent calculations, sixty steps (N =Ny T 60), were
used. Another interesting aspect of Figure 9 is that +he flaprresults con-
verge slower than the lag resuits. This confirms the previous conclusion that
higher harmonic contributions are more significant for the flap degree of
freedom.

Additional resultslz, not presented here, showed that the initisl
conditions in Equation (23) do indeed lead to excellent periodicity of the
response. Plots of the blade tip deflections during the first (N‘rev = 1)
and second (Nfev = 2) blade revolution showed very little difference. The
response during the second and third blade revolution could not be dis-
tinguished on the plots. This indicates that the effect of approximations
snd numerical errors in the actual calculation of the initisl conditions
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(which theoretically insure a periodic response) is usually corrected with the
integration over the second blade revolution.

From the numerical experience galned in this siudy, represented by
Figures 4 -9, it was cogcluded that a maximum change of each Fourler coeffi-
cient of less than 107- i3 sufficient to indicate periodicity and converg-
ence of the nonlinear response. Recall, that in the derivation of the equa-
tions of motion, the displacements were asgsumed to be of order £. =~ 0.2 and
terms of O(S ) were neglected, as compared to terms of O(1). Therefore,
this error control quantity is also logically consistent with the ordering
scheme. All results were obtained by using the linear equilibrium position as
the initial guess in the quasilinearization procedure. A test case showed no
gains in accuracy or computing times when using the converged nonlinesr re-
sponse from & previous lower value of | as the initlal guess.

Lastly, it should be pointed out that the results presented so far
were for a relatively high loading (C. = 0.01). The choice of parameters
made above should thus be considered conaervative when cases with a more
realistic blade loading are considered and, therefore, should also be adequate
when more elements and mode shapes are used in the analysis.

The convergence properties of the Gelerkin finite element method are
congidered next by changing the number of elements used or the number of mode
shapes retained in the normal mode transformation. Aercelastic stabllity ia
studied by plotting the real part of the characteristic exponent, & ,
versus the advance ratic K. The system is stable 1if all < 0. All these
results are based on the second set of configuration parameters. The relative
change in the real part of the characteristic exponent versus_the number of
elements is shown in Figure 10 for the soft in-plane bdlade, Wry = 0.732, and

elastic coupling Rc = 0.6. The number of modes was kept constant at two. As

reference, the five-element solutlon wes used. It is apparent that excellent
convergence is achieved, in particular, when considering that the results in
Figure 10 are for a high advance ratio, 1 = O.4, Interestingly, the accuracy
for the flap degree of freedom is much higher than that for lag. This can
be attributed to the lower stability mergin for lag; see Figures 11 and 12.
Overall, the three-element solution can be considered sufficiently accurate.
It should be kept in mind, however, that the configuration in Figure 10 is
stable. For a more critical case, more elements might be reguired to model
the system accurately. Finally, it is interesting to compare Figure 10 with
the accuracy for the first bending frequency of a nonrotating beam in Figure
2. As expected, the solution of the sercelastic problem does require a
larger number of elements than the free vibration problem. In addition, it
can be seen that convergence is uniform in this case but not one sided, as
indicated by {-%) for the lag degree of freedocm.

Figures 11 and 12 show system stability when changing the mumber of
modes from two to four, while keeping the number of elements constant at
E = 4, The aseroelastic damping for the fundamental modes, clL and ch,
remains unchanged when using four modes as compared to two modes. The
damping, i.e., real part of the characteristic exponents, for both predom-
inant flap modes is practically constant for all advance ratios. The
gbsolute value of §2F is somewhat lower than that for the first flap mode,
§1F’ however, both modes are strongly damped. The first lag mode has 1ts

lowest damping values at moderate advance ratios, K = 0.1 - 0.2. When the
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advance ratio is increased, the results indicete that the forward flight aero-
dynamics have a stabilizing effect. Overall, the smallest stability margin
occurs at hover, W = 0.0, for the second predominant lag mode. However, with
increasing advance ratios, more serodynamic damping is fed into the second lag
mode. For advance ratios, W > 0.2, the real parts of the characteristic
exponents for both lag modes, clL and CBL’ are roughly the same.

The effect of the number of modes retained in the modal reduction pro-
cess on the blede response at K = O.b is illustrated in Figures 13 and 1k,
The response of the second leg mode, h,, 1s very small. Only in the re-
versed flow region can it be distinguished from zero. The second flap mode
response, » is more significant. The behavior of the response associated
with the first lag and flep mode, respectively varies accordingly. For lag,
the response of the first mode does not change significantly when going from
two to four modes in the analysis. For flap, on the other hand, there is a
sizeable chenge. When the response of the first and second flap mode (from
the four-mode analysis, M = U4) are added together, its maximum value is
roughly ei%ht percent larger than that of the response hased on the two-mode
analysis (M =2)

The effect of the number of modes used in the analysis is further
investigated by considering the stability of a stiff in-plene blade, w =
1.417, with elastic coupling R, = 0.8, in propulsive trim (GW = .01,
Results for the real part of the characteristic exponents are obtained by
using two and four modes. In hoth cases, the blade 1s represented by four
elements. The stability curves in Figures 15 and 16 exhiblt the same
general behavior as encountered for the soft in-plane blade (Figures 11 and
12). There are, however, two important differences. The second lag mode
is unsteble at 4 =0.0, 1i.e., CZL is positive. Thereafter, the forward
flight aerodynamics introduce a considerable amount of damping, sc that at
W = 0.1 the second lag mode is more stable than the first lag mode by a
factor of five. A further increase in the advance ratio changes the value
of ClL such that it approaches the value of EZL’ and at | = 0.4,
they are practically the same. The other interesting point is that at W =
O.4 only the four-mode solution exhibits splitting of the characteristic
exponents (real pert) associated with the first Pflap mode. The two-mode
solution does not capture this effect.

Results presented in Figures 11 - 16 indicate that for both response
and stabillty it is important to retain four modes in the analysis. Recall,
that in the hover case the second predominant lag mode itself was the cause
for system instability at certain values of the lag frequency GLl 3 see
Figure 3. In the forward flight case such an Instability was not observed;
however, the presence of the second lag and flap mode lowered the stability
margin and affected the response of the flap degree of freedom. Although
these changes did not result in a eritical condition, they might have an
effect on blade bending moments and shears.

The effect of the elastic coupling parameter, R _, on the stabil-
ity of the first and second predominant lag mode is showi in Figures 17 and
18, respectively, for the soft in-plane blade. The stability mergin of the
first lag mode (Figure 17) increases proportionally with the value of Rc
throughout the entire range of advance ratios. The least stable configura-
tion is obtained for zero elastic coupling, st low advance ratios (W =
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0.1 - 0.2). The behavior of the second lag mode, (Figure 18), is quite differ-
enft. The veriation of damping versus the advance ratio depends strongly on the
value of R_. At low advance ratios, elastic coupling is destabilizing; above
L = 0.3 it%is stabilizing. Lastly, it should be mentioned that the predomi-
nant flap modes are very stable and the demping assoclasted with them remained
almost constant when the elastic coupling was changed. The same cbservation
was made for the hover case.

Additional results obtained in the course of the present studylz are
not presented here due to the lack of space.

All flap-lag forward flight results were generated on an IBM 3033
computer. To find the converged, nonlinear, periodic response and linear-
ized stability for one value of advance ratio, approximetely >0 CPU seconds
were needed in the three-element two-mode case. When using four elements,
L0 CFU seconds were required. In the case of four elements and four modes,
this value increased to epproximately 100 CPU seconds. The computation of
the aerodynamic element matrices takes up roughly 50 percent of these CHU
times. 1In comparison, for the modal Galerkin method, solution of the flap-lag-
torsion probleml? (gix modes) 100 CPU seconds were required.

6. Conclusions

This paper presents the extension of a previously formulated Galerkin-
type finite elgment method for nonselfmdjoint, nonlinear aeroelastic rotary-
wing prdblemsl to the forward flight case. From the numerical results pre-
sented for the flap-lag aercelastic stability and response of hingeless hell-
copter rotor blades in hovert® and in forward flight, the following conclu-
gions are drawn.

1. The Galerkin finite element method is a practical tool for formu-
lating and solving rotary-wing seroelastic problems. Since
spatlal discretization is applied directly to the partial differ-
ential equations, algebraic menipulative labor is reduced signi-
ficantly when compared to the application of the global Galerkin
method t0 similar problems. However, more computer time is spent
in calculations, in particular, when dealing with forward flight.

2. Four or five elements are sufficient to capture the bending dynam~
ics of the blade in hover with the same accuracy as the global
Galerkin method. For practical forward flight cases, three or
four elements suffice.

5. Normal mode transformation, combined with the Gelerkin finite
element formulaetion, reduces the number of nodal degrees of free-
dom significantly and enables one to deal efficiently with
complex problems. Complete freedom regarding the number of modes
t¢ be used 1s retained.

k. For the flap-lag problem in hover it is essential to use two
modes for each elastlic degree of freedom, since the second lag
mode determines system stability for certain velues of elastic
coupling.

5. The flap-lag problem in forward flight is basically stable. The
lowest stability margins are assoclated with the lag degree of
freedom at moderate advance ratios. Inclusion of two modes for each
elastic degree of freedom lowers the stasbility margin; it also
affects the response.
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5.

6. Tor the flap-lag case, nonlinearities affect system stability only at
high advance ratios. Comparison with coupled flap-laeg-torsion
results—' shows that presence of torsion increases system sensitivity
to nonlinear terms and changes predicted demping levels signifi-
cantly. System response, based on the linesrized and, in some cases,
even linear equations seems to be sufficiently accurate.

7. Higher harmonic contributions to the periodic blade motion are
significant, especially for flap stebility and response.

8. Future aspplications of the Galerkin finite element method should

include the torsional degree of freedom and concentrate on the
modeling of bearingless flexbesm-type rotors.
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APPENDIX A: LIST OF SYMBOLS

two-dimensional 1ift curve slope
element nodal displacement vector
system nodal displacement vector

coefficient matrix of dynamic equations in first-order
state variable form, Eqs. (21), (23)

serodynamic stiffness matrices
alrfoll semichord

foreing vector in the linearized dynamic equations in
first-order state varisble form, Eq. (22)

element stiffness matrices

boundary condition term, due to root-torsional stiffness
blade profile drag coefficlent

helicopter parasite drag coefficlent

2
rotor thrust coefficient, T/QA T’ o’

helicopter weight coefficient, w/gA R °R°

demping matrix in linearized dynamic equetions, Eq. (18)
matrices due to axial shortening effect

element matrices, velocity dependent inertia loads

damping matrix in dynamic equations, Bg. (17)
sercdynamic damping matrices

structural damping element matrix
blade root offset from axis of rotation, Fig. 1

unlt vector triad in x50 Voo and 2. directions,
regpectively, bvefore deformation, Fig. la

unit vector triad 8&, €, and é;, respectively,
after deformation, Fig. {b

nmumber of finite elements
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element torsion nodel displacements, Eq. {1k)
forcing vector in dynamic equations, Eq. (17)

inertia and aerodynemic loeds, respectively, independent
of displacements

operator, Eq. (18)

element flap displacements, Eg. (14)
generalized coordinate, wm-th flap mode

blade torsional rigidity, G&F = G/ (m,, Q° Au)
operataor, BEq. (17)

element leg displacements, Bq. (14)

generalized coordinate, um~th lag mode

plade mass moment of Inertls In flap

unit matrix

element matrilces, acceleration dependent inertis losds
index, identifying the quasilinearization steps

inflow functions, Eq. (2)

root torsionsl spring stiffness, Xy = Ki/(my o? £)
stiffness matrix in dynamic equations, Eq. (17)
element metrices, displacement dependent inertiz loads
length of elastic portion of blade, Fig. la

reference value for mass per unit length of blade
totel number of modes used in analysis

nunrbher of lag, flap, and torsion modes, respectively,
uged in analysis

elastic moments, nondimsnsional

mass matrix, Eg. (17)

mass matrix in linearized dynsmic equations, Eq. (18)
number of blades in roter

rumber of element shape functions for esch elastic
degree of fresdom

number of harmonics used in the Fourier anaelysis of the
periodic response
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Npsi
rki

rev

{a}

1

number of steps per revolution when computing the transition
matrices and initisl conditions

number of steps per revolution used in the Runge-Kutta
integration

index, identifying consecutive rotor revolutions
distributed external force vector per unit length of hlade,
nondimensional; subscripts I, A, and D represent inertia,
aerodynanic and structural demping contributions,
respectively

vector of unknown lag, flap, and torsion digplacements
element, (local) approximation to {q}

vector of generalized modal coordinates, Eq. (16)

distributed external moment vector per unit length of
blade, nondimenaional

blade elastic coupling parameter

blade redius, Fig. 1=

stiffness matrix in linearized dynamic equations, Eq. {(18)
tensile force in blade, nondimensicnalized by (mo e 52)
tension matrices

axial displacement of blade, inextensional

elastic lag displacement, Fig. 1b

global and locel approximation to ¥

helicopter forward speed

elastic flap displacement, Fig. 1b

global and local approximation to w

rotating coordinate system, Figs. 1, % = x/R

gpanwise coordinate for elastic portion of the blade,
Figs. 1

blade cross-section offset between serodynamic and elastic
centers; positive for A.C. before E.C,

blade cross.gection offset between center of gravity and
elastic center

blade cross~section offset between tension center and
elastic center
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{y} =
{oy} =

A.l Greek Symbols

e.,9

o’ ls’olc

AgsAgs -

[A] =

element coordlnate
hub loss factor
tip loss factor

first-order state variahle vector of generalized modal
coordinates, Eq. (20)

converged nonlinear steady-state response

perturbation of state vector sbout {y}

rotor angle of attack

blede preconing, inclination of the feathering axis with
respect to the hub plane, Figs. 1

4
Lock number, (2a o, bR )/Ib
flight path angle, measured from horizontal
vector of element lag interpolation polynomials

symbolic order of magnitude quantity, equal to elastic
blade slopes in bending

resl part of Kk

real part of Ak agsociated with predominent I1-th lag,
flap, or torsion mode, respectively

vector of element flap interpolation polynomials
viscous structural damping coefficients in percent of
eritical damping for fundamental lag and flap modes,
respectively

collective piteh setting in hover

critical velue of © at which linearized system is
neutrally stable

blade pretwist, built-in about elastic axis
total geometric pitch angle, Eq. (1)
collective and cyclic piltch components
inflow ratio

components of A, Eq. (2)

k-th eigenvalue, hover; k-th cheracteristic exponent,
forward flight '

modal transformation matrix, Eq. (16)
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B = advance ratio, (V cos ak)/(ﬂR)

Py = mags density of air

g = golidity ratio

$ = elastic torsion deformation

$&, ¢° = global and local approximation to ¢

é = yector of element torsion interpolation polynomials

Qm = global shape function

{¢m] = matrix of global shape functions, Eq. (13)

[o(v)] = transition matrix

¥ = azimuthal angle, measured from stralght aft position,
dimensionless time (V¥ = Ot)

(¥} = matrix of element shape functions, Eq. (1k4)

Wy = imaginery part of Bk

aLl’aFl’aTl = Pirst rotating uncoupled lag, flap, and torsion frequen-
cles, respectively, nondimensionsalized with respect to Q

Q = geonstant rotor speed of rotation, Figs. 1

A.2 Specisl Symbols
() =

2l
#
=Y

() =

» X

c§1lo/

APPENDIX B: ELEMENT INTERPOLATTION
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