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Abstract: Actuator disk models are commonly used for the analysis of rotary wing 

systems. The blade-element momentum model is probably the most popular one because 

of its simplicity, efficiency and good accuracy in many cases. Yet, momentum models 

fail to give satisfactory results in many other cases. The reason is probably the fact that 

momentum models include a basic assumption that the integral form of the equation of 

conservation of momentum can be replaced by its differential form. The paper presents a 

new actuator disk model that does not include the above mentioned assumption. It is 

assumed that the pressure difference between both sides of a certain point of the disk is a 

time average of the pressure difference between both sides of the blade-elements that 

pass through that point. In addition to calculating the axial components of the induced 

velocity through the disk, the new model includes also calculations of the radial 

component. The analysis of the wake is identical to that of the general momentum theory.  

 

The new model includes an iterative solution procedure which is usually stable and 

converges relatively fast. The new model is efficient and requires relatively small 

computing resource and short computing time. The results of the new model are 

compared with the results of exact actuator disk model, which includes a solution of the 

entire flow field. Good agreement is shown between the results of both models. The 

comparisons include the induced velocities through the disk and the induced velocities in 

the far wake. The results of the new model also exhibit good agreement with test results 

of a hovering rotor model with different number of blades, and various pitch angles. 

Increasing differences are shown between these test results and the calculations of the 

general momentum model. 
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1 INTRODUCTION 

 

The first models that were used to analyze rotary-wings were actuator disk models that 

were suggested by Rankin and Froud 
[1]

 for the analysis of marine propellers. According 

to actuator disk models, the propeller or rotor are replaced by an artificial thin disk that 

produces sudden discontinuities of the flow properties. In spite of the development of 

more sophisticated models during the years, that includes: prescribed wake models, free 

wake models and various CFD models – actuator disk models are probably the most 

popular for the analysis of rotary wing systems because of their simplicity and efficiency 

on one hand, and the relative good accuracy that they offer on the other hand. 

 

Horlock 
[2]

 presents an excellent overview of the principles of various actuator disk 

models and their application to various problems. In what follows, only a brief review 

will be presented, that is important in order to understand the advantages of the new 

model that will be presented in the paper. 

 

The best known, and probably more popular than any other model, is the actuator disk 

model associated with the Momentum theory 
[3]

. It is based on applying the basics 

principles of conservation of mass, momentum and energy. The complete model is 

known as the general momentum model. There also exist different simplified momentum 

models. Yet, this model has a major weakness: the integral representing the conservation 

of axial momentum, is replaced by its differential form. Glauert
 [3]

 indicated that: “the 

validity of this equation has not been established and its adoption may imply the neglect 

of the mutual interference between the various annular elements of the propeller, but the 

actual deviations from the conditions presented by … are believed to be extremely small 

in general.” The adoption of this assumption may be one of the reasons to the inability of 

this model to give accurate enough results in various cases. 

 

Thus, while momentum models continued to be applied for increasing number of 

problems and new areas other than aeronautic systems (see for example its application to 

wind energy problems in Ref. [4]), other researchers investigated the inaccuracies 

associated with this model. It started as early as 1925 
[5]

 with Thoma who pointed out 

inconsistencies within the model. Goorjian 
[6] 

showed that when the differential form of 

the equation of axial momentum is combined with the other equations of the model, it 

leads to a contradiction. Rauh and Seelert 
[7]

 discussed problems with the model, 

associated with Betz theory of optimum efficiency of wind turbines. Van Kuik 
[8],[9] 

examined the singularity at the edge of an actuator disk and deduced the presence of a 

singular vortex carrying an edge force. He showed that allowance for this edge force may 

improve the accuracy of performance prediction of rotors. In a later paper 
[10]

 the author 

continued to discuss the inconsistencies associated with the classical actuator disk 

momentum theory. He ended up concluding that the origin of the inconsistency is not 

known yet, and thus it is not clear what changes are required in the modeling of the 

momentum balance in order to remove the inconsistencies. More recently Spalart 
[11]

 

presented a mathematical model of the flow induced by an actuator disk in axial 

translation, which is more accurate than the classical solutions. While performance 
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results of rotor in hover were unchanged, common assumptions were proven to be 

incorrect, resulting in a different flow field through the rotor. 

 

The above described inconsistencies associated with the classical momentum theory, lead 

various researchers to develop more accurate actuator disk models 
[12]-[18]

. More recently 

Conway developed an analytical theory for a linearized actuator disk 
[19]

 and then 

extended it to a heavily loaded actuator disk with non-uniform loading 
[20]

. The  

semi-analytical method takes the contraction of the slipstream into account. Although the 

above mentioned models may offer a better accuracy than the momentum models, since 

they are based on a solution of the flow equations in the entire flow field, these models 

are much more complicated and require long computations. Thus these models lose the 

main benefit of actuator disk models, namely their simplicity and efficiency. 

 

The present paper presents a new actuator disk model, similar in its nature to the 

momentum model. This new model does not involve a solution of the entire flow field, 

but rather concentrate on the characteristics of the flow through the disk and in the far 

wake. The flow through the disk is modeled by a distribution of sinks which determine 

the axial and radial components of the induced flow. Only the integral form of 

conservation of axial momentum is applied, rather than its non-accurate differential form. 

The approximation of the present new model includes an assumption about the 

distribution of the pressure over the disk. Comparisons between the results of the present 

model and exact results of Conway 
[20]

 exhibit good agreement between both. Further 

comparisons with test results of a hovering rotor, show that the present new model 

exhibits a better agreement with the test results than the results of a general momentum 

model. 

 

2 DESCRIPTION OF THE NEW MODEL 

 

A rotary-wing system (rotor, propeller, wind turbine, etc.) in an incoming axial flow is 

considered. The system includes 
b

N  identical blades. A cylindrical system of 

coordinates, ( ), ,r zψ , will be used during the derivations. This is a non-rotating system 

that is attached to the hub center. The z axis coincides with the axis of rotation and points 

in the downstream direction, while r and ψ  are the radial and angular (azimuthal) 

coordinates, respectively. It should be noted that ψ is positive in the counter-clockwise 

direction as seen by an upstream observer. The blades are rotating with an angular 

velocity Ω  about the z axis. The incoming flow has a velocity V in the positive z 

direction (as seen by an observer on the rotor hub). 

 

The blade root is located at z=0. Thus the plane z=0 is defined as the plane of rotation. 

Due to the action of the blades, velocities are induced over the entire space. The induced 

velocity at any point is in general a function of the time, t. Thus the resultant velocity at 

any point, at time t, ( ), , ,r z tψV , equals: 
  

( ) ( ) ( ) ( ), , , , , , , , , , , ,
r r z z

r z t v r z t v r z t V v r z tψ ψψ ψ ψ ψ= ⋅ + ⋅ + + ⋅  V e e e  (1) 
 



 4 

r
e , ψe , and 

z
e  is a triad of unit vectors in the radial, circumferential, and axial directions, 

respectively. It should be noted that 
r

e  and ψe  are functions of ψ . ( ), , ,rv r z tψ , 

( ), , ,v r z tψ ψ , and ( ), , ,zv r z tψ  are the radial , circumferential, and axial components of 

the induced velocity, respectively.  

The pressure at any point is ( ), , ,p p r z tψ∞ +   , where p∞  is the pressure far from the 

disk. 

 

The entire flow field is divided into three main regions: 

a) The actuator disk – The volume occupied by the rotating blades. 

b) The wake – Includes the fluid that has passed through the actuator disk. 

c) The rest of the flow field 

 

In what follows, the three regions will be considered. 

 

2.1 The actuator disk 
It is assumed that the blades are slender and the distance between any material point of 

the blades and the plane of rotation is small compared to the radial coordinate of the same 

material point. Thus the thickness of the actuator disk will be neglected. 

 

Each blade is represented by its quarter-chord line (see Figure 1), which is the line 

connecting the quarter chord points of all the cross-sections. The blade’s cross-sections 

are normal to the quarter-chord line. In the case of straight blades, the quarter-chord line 

is a radial line. In the case of curved blades, the quarter-chord line is a curved line, lying 

in the plane of rotation. 

 

Each point along the quarter-chord line is defined by its radial coordinate r. The radial 

coordinate of the blade tip, R, defines the radius of the actuator disk. 

Consider now an annulus of the actuator disk (see Figure 1) which is defined by its radius 

r and width dr. The outer and inner radii of the annulus are ( )2r dr+  and ( )2r dr− , 

respectively. Inside this annulus, 
b

N  blade elements are rotating. The length of each 

element is dl(r), measured along the quarter-chord line, where: 
  

( )
( )cos

dr
dl r

r
=

Λ  
 (2) 

 

( )rΛ  is the local sweep angle, which is positive in the case of forward sweep (in  

Figure 1 the sweep angle is negative). 
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Figure 1: The actuator disk and a representative blade  

 

 

The cross-section r has a chord length c(r) and its pitch angle (the angle between the 

chord line and the plane of rotation) is ( )rθ  (see Figure 2). For a blade rotating at a 

constant angular speed Ω : 
 

( ) ( )0r r tψ ψ= + Ω⋅  (3) 
 

Where ( )0 rψ  is the angular location, of cross-section r, at t=0. 

 

The flow field at cross-section r, which is located at azimuth ψ , is shown in Figure 2. 

( ),U r ψ  is the resultant velocity at the blade cross-section and is a function of the 

incoming flow velocity, V , blade rotation speed, Ω , sweep angle, ( )rΛ , and the three 

components of the induced velocity “seen” by the cross-section r when located at an 

azimuth angle, ψ : ( ),zw r ψ , ( ),w rψ ψ , and ( ),rw r ψ . The last terms are not functions of 

time since a “steady” case is considered. 

Quarter-chord line 

 

Quarter-chord line 

Blade's trailing edge 

 

Actuator  disk 

Cross-section  

of the blade 

Blade 

element 

Blade's leading edge 

( )dl r

r

dr

( )rΛ

R 

r 

dr 

ψ

Ω
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Figure 2: Cross-section of a blade-element 

 

According to the usual blade-element approach, it is assumed that each cross-section, 

which is not at the close vicinity of the blade tip or root, behaves as the same  

cross-section in an identical two-dimensional flow. Thus the two components of the 

cross-sectional aerodynamic force per unit length, the lift (the component perpendicular 

to ( ),U r ψ  ) and the drag (the component in the ( ),U r ψ  direction), are respectively: 
 

( ) ( ) ( ) ( ) ( ) ( )21
' , , , , , ,Re ,

2
l

L r U r c r C r M r rψ ρ ψ α ψ ψ ψ= ⋅ ⋅ ⋅ ⋅     

( ) ( ) ( ) ( ) ( ) ( )21
' , , , , , ,Re ,

2
d

D r U r c r C r M r rψ ρ ψ α ψ ψ ψ= ⋅ ⋅ ⋅ ⋅     

(4a) 

 

 

(4b) 

ρ  is the fluid mass density. 
l

C  and 
d

C  are the cross-sectional lift and drag coefficients, 

respectively, which are functions of the cross-sectional angle of attack, ( ),rα ψ , Mach 

number, ( ),M r ψ , and Reynolds number, ( )Re ,r ψ . 

 

Near the blade tip or blade root, 
l

C  and 
d

C  should be corrected for three-dimensional 

effects. This correction can be obtained by multiplying the two-dimensional coefficients 

by correction factors. 

( ),zw r ψ

V

 

 
Blade element 

( ),U r ψ

Chord line 

( ) ( )

( ) ( )

, cos

, sin
r

w r r

w r r

ψ ψ

ψ

⋅ Λ

− ⋅ Λ

( )cosr rΩ⋅ ⋅ Λ

( )rθ

( ),rα ψ

( )' ,L r ψ

( )' ,D r ψ( )c r

( ),rϕ ψ
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( )' ,rF r ψ , ( )' ,F rψ ψ , and ( )' ,zF r ψ  are the radial, circumferential and axial components, 

respectively, of the aerodynamic force that acts on a unit length of the blade, at cross-

section r, which is located at an azimuth angle ψ . Based on the previous derivations, 

Figure 1, and Figure 2: 
 

( ) ( ) ( ) ( ) ( ){ } ( )' , ' , sin , ' , cos , sinrF r L r r D r r rψ ψ ϕ ψ ψ ϕ ψ= ⋅ + ⋅ ⋅ Λ  

 

( ) ( ) ( ) ( ) ( ){ } ( )' , ' , sin , ' , cos , cosF r L r r D r r rψ ψ ψ ϕ ψ ψ ϕ ψ= − ⋅ + ⋅ ⋅ Λ  
 

( ) ( ) ( ) ( ) ( )' , ' , cos , ' , sin ,zF r L r r D r rψ ψ ϕ ψ ψ ϕ ψ= − ⋅ + ⋅  

(5a) 
 

 

(5b) 
 

  

(5c) 
 

( ),rϕ ψ  is the local inflow angle, defined in Figure 2. 

The lift per unit length, ( )' ,L r ψ , is a result of the pressure difference between both sides 

of the cross-section. The average pressure difference of cross-section r, at azimuth angle 

ψ , is ( ),p r ψ∆ . Thus: 
 

( ) ( ) ( )' , ,L r p r c rψ ψ= ∆ ⋅  (6) 
 

( )0 ,p p r ψ∞ +    is the pressure of the incoming flow as seen by cross-section r, at an 

azimuth angle ψ . The average pressure on the upper and lower surfaces of that  

cross-section are ( ),up r ψ  and ( ),lp r ψ , respectively, where: 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
0

0

, , ,

, , ,

, , ,

l u

u u

l l

p r p r p r

p r p p r p r

p r p p r p r

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

∞

∞

∆ = −

= + + ∆

= + + ∆

 

(7a) 
 

(7b) 
 

(7c) 
 

Equation (7a) can also be written as follows: 
 

( ) ( ) ( )

( ) ( ) ( )

, , ,

, 1 , ,

u

l

p r k r p r

p r k r p r

ψ ψ ψ

ψ ψ ψ

∆ = − ⋅ ∆

∆ = − ⋅ ∆  
 

(8a) 
 

(8b) 
 

( ),k r ψ  is a function of: ( ),rα ψ , ( ),M r ψ , and, ( )Re ,r ψ . 

 

According to the linear theory of inviscid flow around a two dimensional thin  

cross-section, ( ), 0.5k r ψ =  (see appendix A). The viscid actual value can be obtained 

from measurements of the pressure around a cross-section in a two-dimensional flow, at 

various: angle of attack, Mach number, and Reynolds number – see Appendix A. 

 

In the present axisymmetric and steady case (axial flow and a pitch angle that does not 

change with ψ ), all the cross-sectional variables do not vary with ψ  and are functions of 

r only. Thus, in what follows, the variable ψ  will be dropped from the above defined 

functions associated with cross-section r. 
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The actuator disk approach is based on a time averaging of any variable at any point 

( ),r ψ  of the disk. The averaging with time in the present case is obtained by multiply the 

time dependent variables by ( ) ( ) ( ){ }cos 2 cos
b

N c r r r rϕ π⋅ ⋅ ⋅ ⋅ ⋅ Λ   . 

 

Thus, based on equations (6)-(8), the pressure just before the flow enters the actuator disk 

( )0z −= , ( ),0p r − , and the pressure right after the flow crosses the disk ( )0z += , 

( ),0p r + , are: 
 

( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( )
( )

( )

0

0

cos
,0 '

2 cos

cos
,0 1 '

2 cos

b

b

N r
p r p p r k r L r

r r

N r
p r p p r k r L r

r r

ϕ

π

ϕ

π

−
∞

+
∞

⋅
= + − ⋅ ⋅

⋅ ⋅ ⋅ Λ

⋅
= + + − ⋅ ⋅   ⋅ ⋅ ⋅ Λ

 
(9a) 

 

 

(9b) 

 

( ),rP r z , ( ),P r zψ , and ( ),zP r z  are the average radial, circumferential, and axial 

components of the body force per unit volume, that act on the flow while it passes 

through the actuator disk. After neglecting viscid effects (namely, neglecting the 

influence of ( )'D r  ), using equations (5a,c), and averaging with respect to time, these 

components become: 
 

( )
( ) ( ) ( )

( )

( )
( ) ( )

( )

( )
( ) ( )

( )
( )

' sin tan
,

2

' sin
,

2

' cos
,

2 cos

b

r

b

b

z

N L r r r
P r z z

r

N L r r
P r z z

r

N L r r
P r z z

r r

ψ

ϕ
δ

π

ϕ
δ

π

ϕ
δ

π

⋅ ⋅ ⋅ Λ
= − ⋅

⋅ ⋅

⋅ ⋅
= ⋅

⋅ ⋅

⋅ ⋅
= ⋅

⋅ ⋅ ⋅ Λ

 

(10a) 
 

 

 

(10b) 

 
 

(10c) 

 

( )zδ  is the impulse Delta (Dirac Delta) function. 

After the application of the averaging process, the components of the induced velocity 

and the pressure, for the present axisymmetric case, become functions of r and z only. At 

the disk, the induced velocity components are ( )rw r , ( )w rψ , and ( )zw r . 

 

The axisymmetric, inviscid, and incompressible momentum equations, of the flow 

through the actuator disk, are: 
 

( )

( )

( )

21 1

1 1

1

r r
r z r

r z r

z z
r z z

v v p
v V v v P

r z r r

v v
v V v v v P

r z r

v v p
v V v P

r z z

ψ

ψ ψ
ψ ψ

ρ

ρ

ρ

∂ ∂ ∂ 
⋅ + + ⋅ − ⋅ = ⋅ − + 

∂ ∂ ∂ 

∂ ∂
⋅ + + ⋅ + ⋅ ⋅ = ⋅

∂ ∂

∂ ∂ ∂ 
⋅ + + ⋅ = ⋅ − + 

∂ ∂ ∂ 

 

(11a) 
 

 

 

(11b) 

 
 

(11c) 
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The continuity equation for this case is: 
 

( )1
0

r z
r v v

r r z

∂ ⋅ ∂
⋅ + =

∂ ∂
 (12) 

 

All the variables appearing in equations (11a,c) and  (12) are functions of r and  z. 

 

Integration with respect to z, of the continuity equation (12), from 0z
−=  to 0z

+= , 

results in: 
 

( ) ( ),0 ,0 0
z z

v r v r+ −− =  (13) 
 

Equation (21) indicates that there is a continuity of the axial velocity through the disk, 

namely: 
 

( ) ( ) ( ),0 ,0
z z z

v r v r w r+ −= =  (14) 
 

Similar integration across the disk of equation (11c), using equation (14), indicates that: 
 

( ) ( ) ( ) ( )
( )

cos '
,0 ,0

2 cos

b
N r L r

p r p r
r r

ϕ

π
+ − ⋅ ⋅

− =
⋅ ⋅ ⋅ Λ

 (15) 

 

Equation (15) is in agreement with equations (9a,b). 

 

Integration across the disk (with respect to z, from 0z
−=  to 0z

+= ) of equations (11a,b) 

results in: 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

sin tan '1
,0 ,0

2

sin '1
,0 ,0

2

b

z r r

b

z

N r r L r
V w r v r v r

r

N r L r
V w r v r v r

r
ψ ψ

ϕ

ρ π

ϕ

ρ π

+ −

+ −

⋅ ⋅ Λ ⋅
 + ⋅ − = ⋅     ⋅ ⋅

⋅ ⋅
 + ⋅ − = ⋅     ⋅ ⋅

 

(16a) 

 

 

(16b) 

 

Equation (16a) indicates that discontinuity in the radial component of the induced 

velocity occurs only in the case of curved blades or when ( ) 0
z

V w r+ =   . On the other 

hand, only in the case of contra-rotating rotors (where the resultant term 

( ) ( )sin '
b

N r L rϕ⋅ ⋅   , of both rotors, becomes zero) or when ( ) 0
z

V w r+ =    and thus 

( ) 0rϕ = , there may be a continuity in the circumferential induced velocity. Based on 

conservation of angular momentum, assuming that a fluid particle does not cross the disk 

more than one time: 
 

( ), 0     for      0v r z zψ = <  (17) 
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It is also common to assume: 
 

( ) ( )

( ) ( ) ( )

1
,0

2

1
,0 ,0

2
r r r

w r v r

w r v r v r

ψ ψ
+

+ −

= ⋅

 = ⋅ + 

 
(18a) 

 

(18b) 

 

 

2.2 The wake  

 

The wake starts at the actuator disk plane ( )0z +=  and continues to infinity ( )z → +∞ . 

The lateral surface of the wake is defined by the streamlines that pass through the 

boundary of the actuator disk ( )r R= . As defined in the previous sub-section, at 0z
+=  

the components of the induced velocity are: ( ),0
r

v r + , ( ),0v rψ
+ , and ( )zw r . The 

pressure is ( ),0p p r
+

∞
 +  . In the previous sub-section an annulus of the disk was 

defined by its outer and inner radii, ( )2r dr+  and ( )2r dr− , respectively. The annulus 

width is dr. The streamlines that pass through the boundaries of the annulus define a 

control volume. The radius of this control volume at ( )z → +∞  is r’ and its width is dr’, 

as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: A control volume of the wake 

 
 

z 

r 

( )zV w r+
( ),0v rψ

+

( ),0
r

v r +

r’ 

( )' 'zV w r+

( )' 'w rψ

dr 

dr’ 

z=0
+ 

z = +∞

p
+
(r) 

p’(r’)
 

Actuator disk Plane
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r’ is a function of r, thus: 
 

( )' 'r r r=  

( )' ' ,dr dr r dr=  

(19a) 
 

(19b) 
 

The induced velocity components at infinity are ( )'rw r , ( )'w rψ , and ( )'zw r . According 

to the present assumptions ( )'rw r  becomes zero. 

Due to conservation of mass: 
 

( ) ( )' ' ' '
z z

V w r r dr V w r r dr+ ⋅ ⋅ = + ⋅ ⋅        (20) 
 

Bernoulli’s equation along a streamline in the wake results in: 
 

( ) ( ) ( ){ } ( )

( ) ( ){ } ( )

2 2 2

2 2

,0 ,0 ,0
2

                    ' ' ' ' ' '
2

z r

z

V w r v r v r p r

V w r w r p r

ψ

ψ

ρ

ρ

+ + +⋅ + + + + =  

= ⋅ + + +  

 (21) 

 

Equation (11a) implies: 
 

( ) ( )2' '' '

' '

w rdp r

dr r

ψρ= ⋅  (22) 

 

Where: 
 

( ) ( )' '       for      ' 'p r R p r r R∞= ≥    (23) 
 

Conservation of angular momentum and use of Equation (20) result in: 
 

( ) ( )' ' ' , 0w r r v r rψ ψ
+⋅ = ⋅  (24) 

 

All the equations of this sub-section are identical to the wake equations of the general 

momentum theory. 

 

2.3 The rest of the flow field 

 

Consider the half space z<0. The actuator disk can be looked upon as an “apparatus” that 

sucks the fluid from that region and “pumps” it downstream into the wake. This 

mechanism can be modeled, for the region z<0, as a distribution of sinks over the 

actuator disk. Since the present case is axisymmetric, the sink distribution should also be 

axisymmetric, namely a function of r only. The intensity of the sink distribution, per unit 

area of the disk, is denoted ( )rγ . 

 

In Appendix B, analysis of the flow field induced by such a sink distribution is presented. 

Based on Equations (14) and (B- 9): 
 

( ) ( )2 zr w rγ = ⋅  (25) 
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Substitution of Equation (25) into Equation (B- 19) results in the following expression for 

the radial component of the induced velocity, right before the flow enters the disk: 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

'

0

' 0

'

'

1
,0 lim ' ' , , ' ' , , ' '

1
                ' ' , , ' ' , , ' '

               ln
2

r r

r z

r

r

z

r r

v r w r r r A r z r r B r z r dr

w r r r A r z r r B r z r dr

r

r

ε

ε

ε

π

π

γ
ε ε

π

= −

−

→

=

→∞

= +




= − ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅   



− ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅  


+ ⋅ ⋅ 

⋅ ⋅ 

∫

∫  
(26) 

 

The various parameters that appear in Equation (26) are defined in Appendix B. 

 

Since it is assumed that any fluid particle crosses the actuator disk only once, Bernoulli 

equation for a streamline that ends at a point 0z
−=  over the disk becomes (use is also 

made of Equation (17) ): 
 

( ) ( ) ( ) ( )2 21
,0 ,0 0

2
z z r

V w r w r v r p rρ − − ⋅ ⋅ ⋅ + + + =   (27) 

 

By using Equation (26) the value of ( ),0
r

v r −  is obtained also for points outside the disk 

area. Since for r>R continuity of the flow and pressure across the plane z=0 should exist, 

it is clear that, in general, there is also an axial induced velocity outside the disk, 

( )zw r R> . A first order approximation for ( )zw r  outside the disk area, is discussed in 

Appendix C. 

 

2.4 The solution procedure 

 

The present analysis includes an iterative solution procedure. Each iteration loop includes 

three stages: 

I) Finding the characteristics of the flow that passes through the actuator disk 

II) Finding the characteristics of the flow in the far wake 

III) Checking convergence and preparing the next iteration if necessary 

 

There also may be an iterative procedure within each stage.  

In what follows the three stages will be described 
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2.4.1 Stage I 

 

It is assumed that ( )0p r  is known. At the beginning of the first iterarion. ( )0p r  can be 

chosen equal to zero. 

There are eleven unknowns associated with this stage: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,0 , ,0 , ,0 , ,0 , ' , , ,
r z r r

w r w r w r v r v r v r p r L r r r U rψ ψ ϕ α− + + −  

Based on the derivations of subsections 2.1 and 2.3, the following eight equations are 

used during the solution procedure of this stage: (4a), (9a), (16a,b), (18a,b), (26), (27). 

There are additional three equations that are obtained from geometric relations presented 

in Figure 2: 
 

( )
( )

( ) ( ) ( ) ( ) ( )
1tan

cos cos sin

z

r

V w r
r

r r w r r w r rψ

ϕ −
 +

=  
Ω⋅ ⋅ Λ − ⋅ Λ + ⋅ Λ  

 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
22

cos , cos sin
z r

U r V w r r r w r r w r rψ ψ = + + Ω ⋅ ⋅ Λ − ⋅ Λ + ⋅ Λ      

 

 

( ) ( ) ( )r r rα θ ϕ= −  

(28a) 

 

 
 

(28b) 
 

 

 

(28c) 
 

 Thus the eleven equations are used to solve for the eleven unknowns. Because of the 

nonlinear nature of the equations, the solution procedure is iterative. The convergence is 

usually fast and stable. 

 

It should be noted that the solution procedure includes an additional set of variables: 

( ) ( ) ( ), ,l dC r C r k r . These variables are found based on the cross-sectional aerodynamic 

characteristics and flow conditions, namely: ( ) ( ) ( ), ,Rer M r rα . 

 

2.4.2 Stage II 

 

The unknowns associated with this stage are: ( ) ( ) ( ) ( ) ( ),0 , ' , ' , ' , '
r z

p r r r w r w r p rψ
+ . 

The five equations that are solved in order to find these unknowns are: (15), (20), (21), 

(22), and (24). In addition the condition of Equation (23) is also applied. 

 

2.4.3 Stage III 

 

At this stage the convergence of the entire solution is checked. The convergence criterion 

is based on conservation of axial momentum. This condition is expressed by the 

following equation: 
 

( ) ( )

( )

( ) ( )

( )' '

0 0 0

' ' ' ' ' ' ' ' ' '

r R r RR

z zp r r dr p r r dr V w r w r r drρ∆ ⋅ ⋅ − ⋅ ⋅ = ⋅ + ⋅ ⋅ ⋅  ∫ ∫ ∫  (29) 
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By using Equation (20), the last equation can be written as: 
 

( ) ( ) ( )

( )

( ) ( ) ( )
( )

( )

'

0 0

' ' ' ' ' '

' '
' '

r RR

e z z

z

e

z

p r r dr V w r w r r dr

V w r
p r p r p r r

V w r r

ρ∆ ⋅ ⋅ = ⋅ + ⋅ ⋅ ⋅  

+
∆ = ∆ − ⋅   +   

∫ ∫
 

(30a) 

 

 

(30b) 

 

( )ep r∆  can be looked upon as an “equivalent” pressure difference across the disk. Thus, 

based on Equations (7b) and (8a), in order to satisfy the momentum equation, ( )0p r  is 

chosen as: 
 

( ) ( ) ( )
( )

( )0 ' '
' '

z

z

V w r
p r k r p r r

V w r r

+
= ⋅ ⋅   +   

 (31) 

 

The above described step (defining ( )0p r  by Equation (31) ) still does not assure the 

conservation of axial momentum. Thus, if necessary, k(r) will be varied by a certain 

constant factor, until Equation (28) is satisfied (based on a predetermined convergence 

criterion). If this factor is given by ( )1 C+ , it simply indicates that Equation (31) should 

be replaced by the following one: 
 

( ) ( ) ( ) ( )
( )

( )
( ) ( )0 1 ' '

' '

z

z

V w r
p r C k r p r r C k r p r

V w r r

+
= + ⋅ ⋅ ⋅ − ⋅ ⋅ ∆   +   

 (32) 

 

At this stage the value of ( )0p r  according to (32) is compared with the value of ( )0p r  

that was used as an input to the first stage. If the difference between both is larger than a 

predetermined convergence criterion, a new iteration cycle is started. 

 

It should be pointed out that the present iterative procedure is very stable and usually 

converges very rapidly, unlike the convergence procedure of the general momentum 

theory which in various cases suffers from numerical problems. 

 

3 RESULTS 
 

The new actuator disk model will be validated by comparing its results with theoretical 

results of Conway 
[20]

 and test results that were reported by Landgrebe 
[21]

. 

 

3.1 Comparison with the results of Conway 

 

Conway 
[20] 

presented exact results for the flow field of an actuator disk. In his report 

Conway used the following definitions for the rotor advance ratio, J: 
 

V
J

R

π ⋅
=

Ω⋅
 (33) 
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( )
21

2

p r

Vρ

∆

⋅ ⋅

r

R
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ii

iii

and the thrust coefficient, 
Th

C : 
 

2 21

2

Th

T
C

R Vρ
=

⋅ ⋅ ⋅

 
(34a) 

 

 

(34b) 
 

Where T is the total thrust and P is the required power. 

 

Conway analysed three different disk loadings, ( )p r∆  (see Figure 4): 

i) The disk loading has maximum at the disk center (r=0) and then decreases 

monotonically toward the disk rim, where its value becomes zero. There is no 

slipstream rotation ( ), 0v r zψ =   and 3.147
Th

C = . 

ii) A typical rotor loading (increased loading at the outer part of the disk) with 

zero slipstream rotation. 0.9533
Th

C = . 

iii) A typical rotor loading with slipstream rotation. 0.8903
Th

C =  and 1J = . 

 

In all three cases the loading distribution was obtained from the figures of Ref. [20] and 

thus certain inaccuracies may exist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Conway’s loads distributions 
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3.1.1 Case i 

 

The iterative numerical procedure convergences relatively fast. The value of C at 

convergence is C=-0.07. It shows that a relatively small ( )0p r  is required in order to 

satisfy the conservation of axial momentum. 

 

The axial induced velocity through the disk, ( )zw r , is shown in Figure 5. There is a good 

agreement between the results of both models. A difference of ~5% in ( )zw r  exists at 

r=0, where this component obtains its maximum value. Good agreement is also shown 

for the negative axial induced velocity near the disk rim. The present approximation for 

the axial induced velocity outside the disk also seems to be satisfactory when taking into 

account the fact that the influence of this velocity on the flow through the disk is 

relatively small. 

 

The radial induced velocity is shown in Figure 6. The agreement between the results of 

the two models is good with differences not exceeding 9%. 

 

Figure 7 presents the axial induced velocity in the wake. While Conway gives results for 

z=R, the results of the present model are for the case z → ∞ . It can be seen that the wake 

at z=R is almost fully developed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Conway’s case i - Axial induced velocity at the disk plane 
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Figure 6: Radial Conway’s case i - Radial induced velocity at the disk plane 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Conway’s case i - Axial induced velocity in the far wake 
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3.1.2 Case ii 

 

The convergence in this case is again stable and fast with C=-0.04. The axial induced 

velocity through the disk is shown in Figure 8. There is a fairly good agreement between 

the results of the two models. The differences at the maximum value reach a value of 

~5%. It should be noted that the negative induced velocity near the rim of the disk and for 

r>R exhibits, again, a good agreement between the two models. On the other hand, 

Conway predicts a small negative induced axial velocity at the middle of the disk, while 

the present model practically predicts a zero axial induced velocity there. 

 

The agreement between the radial component of the induced velocity, obtained by the 

two models, is good as shown in Figure 9. 

 

The axial induced velocity in the wake is shown in Figure 10. As indicated for case i, the 

results of Conway are for z=R, while in the case of the present model the results are for 

z → ∞ . Again, it can be seen that the flow at z=R is almost fully developed. The value of 

the negative induced velocity at r=R is fairly large. Examination of Figure 15 of Ref. 

[20], indicates that this value approaches zero as z is increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Conway’s case ii - Axial induced velocity at the disk plane 
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Figure 9: Radial Conway’s case ii - Radial induced velocity at the disk plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Axial Conway’s case ii - Axial induced velocity in the far wake 
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3.1.3 Case iii 

 

The convergence parameter in this case is C=-0.04 . It shows again that the magnitude of 

( )0p r  required for obtaining conservation of axial momentum is relatively small. 

 

The agreement between the axial induced velocity as obtained from both models is 

excellent, as shown in Figure 11. It should be noted again that there is a good agreement 

of the negative values near the disk rim and for r>R. 

 

There is also an excellent agreement between the radial and tangential components of the 

induced velocities through the disk – ( )rw r  and ( )w rψ , respectively – as shown in 

Figure 12 and Figure 13. 

 

Figure 14 and Figure 15 show also excellent agreement between both models concerning 

the axial and tangential components in the far wake ( z → ∞ ). The results indicate that the 

radii of the far wake, according to both models, namely ( )'r R , practically obtain 

identical values. 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11: Conway’s case iii - Axial induced velocity at the disk plane 
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Figure 12: Conway’s case iii - Radial induced velocity at the disk plane 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13: Conway’s case iii - Circumferential induced velocity at the disk plane 

 



 22 

r

R

( )'w r

V

ψ

( )'
z

w r

V

r

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Conway,z=Infinity

New actuator disk model

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Conway,z=Infinity

New actuator disk model

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Conway’s case iii - Axial induced velocity in the far wake 
 
 
 
 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15: Conway’s case iii - Circumferential induced velocity in the far wake
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3.2 Comparison with the test results of Landgrebe  

 

Landgrebe 
[21]

 presented test results for various rotor models at hover. The models differ 

by: number of blades, 
b

N , built-in pre-twist of the blades, 
tw

θ , the pitch angle of the 

blade given at r=0.75R,  0.75θ , and the blade chord, c. The detailed geometry of the 

blades is given in Ref. [21]. 

 

Only results for untwisted blades are presented here. Those blades have a radius 

[ ]0.679R m=  and constant chord  [ ]0.0373c m= . The blade cross-section is  

NACA 0012. The tests were conducted at constant rotation speed of [ ]3000 RPM . 

 

The results include the thrust coefficient, 
T

C , and the power coefficient, 
P

C  , which are 

defined below: 
 

( )

( )

22

32

T

P

T
C

R R

P
C

R R

ρ π

ρ π

=
⋅ ⋅ ⋅ Ω ⋅

=
⋅ ⋅ ⋅ Ω ⋅

 

(35a) 

 

 

(35b) 

 

T is the rotor thrust while P is the required power. 

The thrust coefficient, 
T

C  is shown in Figure 16, for various number of blades 

( )2,4,6,8bN = , as a function of the blade pitch angle, 0.75θ . The agreement between the 

results of the present model and test results is good, except for large number of blades 

( )6,8bN =  at small pitch angles [ ]( )0.75 6 degθ = . The results of the general momentum 

model give higher values of thrust coefficients that exhibit difference of up to 20%. 

 

The power coefficient, 
P

C , is shown in Figure 17 . Except for large pitch angles, there is 

a fairly good agreement between the results of the present model and the general 

momentum model, and both exhibit good agreement with the test results. At larger pitch 

angles [ ]( )0.75 10 degθ > , while the present model still exhibits good agreement with the 

test results, the results of the general momentum model are lower than the results of the 

present model and exhibit increasing deviations from the test results. 
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Figure 16: Comparison with Landgrebe’s [21] results - thrust coefficient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17: Comparison with Landgrebe’s [21] results - power coefficient
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4 CONCLUSIONS 

 

 A new actuator disk model has been presented. The derivation of the model for the case 

of an axial, axisymmetric flow through the disk was discussed.  

 

The entire flow field is divided into three different regions that include: the actuator disk, 

the wake, and the rest of the flow field. The actuator disk is analyzed by using a common 

blade-element approach. Swept blades can be dealt with, as well as straight blades. It is 

assumed that the pressure difference on both sides of the disk is a result of time 

averaging, at any point of the disk, of the pressure difference between both sides of the 

blade-elements that pass through that point. The pressure on both sides of the airfoil is 

obtained from either theoretical derivations, or from test results of a two dimensional 

flow over the same airfoil. This data is in general a function of: the angle of attack, Mach 

number and Reynolds number. The relations between the flow characteristics before the 

flow crosses the disk and right after it passes it, are obtained by examining the 

appropriate momentum and continuity equations. 

 

The equations associated with the wake are identical to the wake equations that are used 

in the general momentum theory. The analysis of the rest of the flow field includes the 

calculation of the induced velocities just before the flow crosses the disk. In order to 

calculate those induced velocities the influence of the disk on the flow is modeled by an 

axisymmetric distribution of sinks. It is shown that the intensity of the sinks, per unit area 

of the disk, is directly related to the magnitude of the axial induced velocity at that point. 

Integral relation yields the value of the radial component of the induced velocity at any 

point of the disk. The calculation of this integral involves singularity problems, which are 

treated by analytical derivations near the singular points. A first order approximation is 

used for calculating the axial induced velocities at the disk plane, at radial distances 

which are larger than the disk radius. 

 

The solution of the highly nonlinear equations involves an iterative procedure. Usually 

this procedure is stable and converges relatively fast. The convergence criterion of the 

entire iterative procedure is based on conservation of the integral axial momentum. 

 

Comparison of the results of the present model with those of the exact model of Conway 

shows a very good agreement. It should be noted that Conway’s model is much more 

complicated and requires much longer computing time. It is also important to note that 

negative value of the induced velocity near the rim of the actuator disk agrees very well 

with the upwash obtained by Conway. The general momentum theory is not capable of 

predicting this upwash. There is also a very good agreement between the radial induced 

velocity as calculated by Conway, and the present results, indicating that the modeling of 

the disk as a distribution of sinks is a probably a correct representation.  

 

Comparison of the results of the present model with the test results of Landgrebe shows a 

fair agreement, while the general momentum results exhibit increasing differences. 
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The present results are promising and indicate that the new model should be further 

validated against existing theoretical results of more detailed and more accurate actuator 

disk models’ or further validated against additional test results. Moreover, it seems that 

the present model can be extended to include cases of incoming inclined flow (relative to 

the disk) which describes a helicopter rotor in forward flight. 

 

APPENDIX A. THE AVERAGE PRESSURE RATIO, k(r) 

 

The parameter k(r) is defined by Equations (8a,b). k(r) gives the ratio between the 

contribution of the upper and the lower surfaces of an airfoil, to the pressure difference 

between those two surfaces.  

 

Consider a two-dimensional flow about an airfoil. The pressure of the undisturbed flow is 

p∞ . x is a coordinate along the chord, where x=0 at the leading edge and x=c at the 

trailing edge. The pressure at the upper surface is ( )u
p p x c∞ + ∆   , while the pressure on 

the lower surface is ( )l
p p x c∞ + ∆   . 

The lift per unit length of the airfoil is L’ and it is the result of a contribution of the upper 

surface, '
u

L∆ , and lower surface, '
l

L∆ , thus: 
 

' ' '
u l

L L L= ∆ + ∆  (A- 1) 
 

The terms in Equation (A- 1) can be written as functions of the upper and lower 

pressures: 
  

1

0

0

1

0

0

'  

'  

u u u

l l l

x x x
L p p d

c c c

x x x
L p p d

c c c

      
∆ = − ∆ − ∆ ⋅      

      

      
∆ = ∆ − ∆ ⋅      

      

∫

∫
 

(A- 2a) 

 

 

 

(A- 2b) 

 

( )0up x c∆  and ( )0lp x c∆ are the values of ( )up x c∆  and ( )lp x c∆ , respectively, for 

zero lift. 

According to equations (8a,b), k is defined as follows: 
 

( )

' '

' 1 . '

u

l

L k L

L k L

∆ = ⋅

∆ = −
 

(A- 3a) 
 

(A- 3b) 
 

Thus: 
 

' '
1

' '

u l
L L

k
L L

∆ ∆
= = −  (A- 4) 

 

k is a function of the flow conditions, namely: the section angle of attack, α , free stream 

mach number, M, and Reynolds number, Re. 
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It is convenient to replace the pressure by the pressure coefficient, namely: 
 

2

0

2

0

1

2

1

2

u

Pu

l

Pl

x
p

x c
C

c
u

x
p

x c
C

c
u

ρ

ρ

 
∆  

   = 
  ⋅ ⋅

 
∆  

   = 
  ⋅ ⋅

 

(A- 5a) 

 

 

 

(A- 5b) 

 

Where ρ  is the fluid mass density and 0u  is the free stream velocity. 

In the same manner ( )0PuC x c  and ( )0PlC x c  are defined based on ( )0up x c∆  and 

( )0lp x c∆ , respectively. 

Substitution of Equations (A- 5a,b) into Equations (A- 2a,b) and then into Equation  

(A- 4), result in: 
 

1

0

0

1

0

Pu Pu

Pl Pu

x x x
C C d

c c c

k

x x x
C C d

c c c

      
− − ⋅      

      
=

      
− ⋅      

      

∫

∫
 (A- 6) 

 

For the simple case of an incompressible, ideal, two dimensional flow over a flat plate, 

the pressure coefficients are 
[22]

: 
 

( )

( )

( )

( )
0

0

2 tan
2

2 tan
2

0

0

Pu

Pu

Pu

Pl

C

C

C

C

ξ
ξ α

ξ
ξ α

ξ

ξ

= − ⋅ ⋅

= ⋅ ⋅

=

=

 

(A- 7a) 

 

(A- 7b) 

 

(A- 7c) 
 

(A- 7d) 

 

Where ξ : 
 

1 cos
        0

2

x

c

ξ
ξ π

+
= < <  (A- 8) 

 

Substituting Equations (A- 7a,d) into Equation (A- 6), results in k=0.5.  
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In Figure (A- 1) the experimental value of k, for a NACA-0012 airfoil, is presented, 

based on the results of Gregory and O’Reilly 
[23]

. In Figure (A- 2) similar results for a 

NACA-64A006 airfoil are presented, based on the results of McCullough and Gault 
[24]

. 

The results for the two airfoils indicate that at low values of the lift coefficient, the value 

of k is somewhat higher than the theoretical value of 0.5 .  As the angle of attack 

increases and approaches stall, the value of k increases. The increase in k is more 

pronounced in the case of NACA 64A006.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure (A- 1): The lift coefficient and value of k 
for a NACA-0012 airfoil as a function of the 

angle of attack, 6
0.16,Re 2.88 10M = = ⋅  [23] 

Figure (A- 2): The lift coefficient and value of k 
for a NACA-64A006 airfoil as a function of the 

angle of attack, 6
0.17,Re 5.8 10M = = ⋅  

[24]
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APPENDIX B. THE INDUCED VELOCITY DUE TO A PLANNAR 

AXISYMMETRIC DISTRIBUTION OF SINKS 
 

( , , )r zψ  is a polar system of coordinates. There is an axisymmetric distribution of sinks 

at the plane z=0. The intensity of the sinks distribution, per unit area of the plane, is 

( )rγ . The field of the induced velocities is symmetric about the plane z=0 and 

axisymmetric about z.  

The radial and axial components of the induced velocities are, ( ),ru r z and ( ),zu r z , 

respectively: 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

'

' 0

'

' 0

, ' ' , , ' '
2
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, ' ' , , ' ' , , ' '
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u r z r r A r z r dr

u r z r r r A r z r r B r z r dr

γ
π

γ
π
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=

= − ⋅ ⋅ ⋅ ⋅
⋅

= − ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅  ⋅

∫

∫
 

(B- 1a) 

 

 

 

(B- 1b) 

 

where ( ), , 'A r z r  and ( ), , 'B r z r  are:  
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ψ π
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ψ π
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=
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∫
 

(B- 2a) 

 

 

(B- 2b) 

 

Integration of the last two equations
 [25]

,
 
results in:  

 

( )
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2 22 2

2
, , '

' '

A r z r E
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(B- 3a) 

 

 

(B- 3b) 

Where:  
 

( )
2 2

'
2

'

r r

r r z
κ

⋅
= ⋅

+ +
 (B- 4) 

 

( )K κ  and ( )E κ  are complete elliptic integrals of the first kind and the second kind, 

respectively 

Equations (B- 3a,b) are substituted into Equations (B- 1a,b) and solved numerically. The 

difficulty of the integration involves a singularity for the case 0z → and 'r r→ . This 
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singularity will be dealt with in what follows. Because of the symmetry about the z=0 

plane, the derivation will be continued for the case z<0. 

 

According to Equation (B- 1a), since the integral is multiply by z, the contribution to 

( ),0
z

u r −  is confined to the neighborhood of r, namely 'r r→ . Thus: 
 

( ) ( ) ( )
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ε
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∫  (B- 5) 

 

where ε is a small parameter. 

 

The integral of (B- 5) is solved using the following transformation:  
 

'

'

t r r

dt dr

= −

=
 (B- 6) 

 

The elliptic integral of the first kind is replaced by the first two terms of its series 

expansion 
[25]

:  
  

( )
( )

( )
2

'
1 ln '

2
E

κ
κ κ≅ − ⋅  (B- 7) 

where 'κ  is: 
  

2' 1κ κ= −  (B- 8) 
 

Substituting Equations (B- 7) and (B- 6) into equation (B- 5), results in: 
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∫  (B- 9) 

 

The radial component of the induced velocity for 0z
−→ , ( ),0

r
u r − , becomes: 
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The singularity appears in the integral, ( ),I r ε : 
 

( ) ( ) ( ) ( )
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Substituting Equation (B- 6) into Equation (B- 11) leads to the following expression: 
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where: 
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(B- 13b) 

 
 

 

(B- 13c) 
 

A Taylor expansion of ( )1 , ,G r t z  and ( )2 , ,G r t z , as defined by Equations (B- 13b,c), 

then neglecting high orders of t, lead to the following expressions: 
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(B- 14b) 

 

A series expansion of the complete elliptic integral of the second kind leads to the 

following approximation 
[25]

:  
  

( ) ( )ln 4 ln 'K κ κ≅ −  (B- 15) 
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Using Equations (B- 7), (B- 8), (B- 13a), and (B- 15) results in the following 

approximations for the complete elliptic integrals of the first and second kind, for 0z
−→  

and 'r r→ : 
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Substitution of Equations (B- 14a,b) and (B- 16a,b) into Equation (B- 12) results in: 
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Carrying out the integrations of the last equation and neglecting higher order terms in ε , 

leads to the following approximation for ( ),I r ε : 
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 (B- 18) 

 

If ε  is small enough, then only the term ( ) lnrγ ε⋅    inside the large brackets can be 

retained while neglecting the other much smaller ones. Thus the final expression of the 

radial component of the induced velocity at the entrance to the disk, ( ),0
r

u r − , becomes: 
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The procedure of calculating ( ),0
r

u r −  is as follows: An initial value of ε  is defined and 

( ),0
r

u r −  is calculated according to Equation (B- 19), where numerical integration is 
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used to find the values of the first two integrals. Then ε  is reduced and ( ),0
r

u r −  is 

calculated again. Those calculations are repeated until predetermined convergence 

criteria are met. This procedure is very efficient and stable. 

 

 

APPENDIX C. APPROXIMATION FOR ( )zw r  OUTSIDE THE DISK FOR z=0 

 

The total mass flow rate through the disk ( )0 r R≤ ≤  is C. For points that are far enough 

from the disk (and are not located near the wake) the induced velocity components are 

very close to those induced by a sink of intensity C, namely: 
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(C- 1a) 

 

 

(C- 1b) 

 

For the case z r≪ and r>R, it is possible to describe ( ),rw r z  and ( ),zw r z  as a series 

that converges rapidly: 
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(C- 2b) 

 

The purpose now is to change Equations (C- 2a,b) in such a manner that they will 

describe the flow field near the edge of the disk, but for large enough values of r ( r R≫ ) 

and very small values of z , will converge to the expressions (C- 2a,b). Using first order 

approximation, the expression for  ( ),zv r z  becomes: 
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34
2 2 2
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w R R C z
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 (C- 3) 

 

The last expression converges to Equation (C- 2b) for large enough values of r. On the 

other end it results in a continuity in the value of ( ),zv r z  for r=R and z=0. 
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