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Abstract 

This paper describes the formulation and valida­
tion of a high-order linearized mathematical model of 
helicopter flight mechanics, which includes rotor flap 
and lag degrees of freedom as well as inflow dynamics. 
The model is extracted numerically from an existing 
nonlinear, blade element, time simulation model. Ex­
tensive modifications in the formulation and solution 
process of the nonlinear model, required for a theo­
retically rigorous linearization, are described in de­
tail. The validation results show that the linearized 
model successfully captures the coupled rotor-fuselage 
dynamics in the frequency band most critical for the 
design of advanced flight control systems. Additional 
results quantify the extent to which the order of the 
model can be reduced without loss of fidelity. 
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!! Main rotor speed 
Subscripts 
N R Quantity in the nonrotating system 
R Quantity in the rotating system 
trim Value in trimmed condition 
0 Collective mode in multiblade coordinates 
lc, ls Cyclic modes in multiblade coordinates 
2 Reactionless mode in multiblade coordinates 
Other symbols 
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Derivative with respect to time 
Small perturbation quantity 

Introduction 

The achievement of superior, mission-tailored han­
dling qualities will be the driver for the new generation 
of military helicopters. The handling qualities require­
ments will depend on the specific mission, ranging 
from the precision flight control typical of nap-of-the-
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Earth flying conditions, to the high maneuverability 
and agility required for air-to--air combat missions. 

The need to satisfy the stringent handling qual­
ities requirements of the future leads to highly cou­
pled and unstable bare-airframe helicopter configura­
tions such as high hinge offset, hingeless, or bearing­
Jess rotor configurations (1,2]. These helicopters will 
be equipped with high-gain, full-authority flight con­
trol systems to reduce off-axis cross-couplings, increase 
control bandwidth, and provide the desired response 
modes for given missions. 

Because most modern multivariable control system 
design techniques require a linear mathematical model 
of the plant, the need exists for high quality linearized 
models of helicopter dynamics. It should be possible 
to extract these models from comprehensive, nonlin­
ear helicopter flight simulation models. The dynam­
ics of phenomena in the bandwidth of interest should 
be accurately modeled, therefore main rotor blade dy­
namics and inflow dynamics should be included in the 
linear model. In fact, neglecting rotor dynamics leads 
to greatly overpredicting the maximum gains that can 
be achieved in actual aircraft (3]. 

Motivated by the need for accurate linear models 
for flight control design applications, the activity in 
formulation and validation of high-order mathemati­
cal models of helicopter stability and control has in­
creased in recent years. Only models capable of pre­
dicting the aircraft dynamics are considered in this 
section. Therefore no details are provided about the 
linear models obtained from flight test results, using 
system identification techniques. Mathematical mod­
els for the prediction of coupled rotor/fuselage aerome­
chanical instabilities such as ground and air resonance 
are also excluded from this discussion. Although these 
models have many of the ingredients required for sta­
bility and control analyses, the mathematical model­
ing of the fuselage dynamics is generally limited by 
the assumption that its motion be small. Extensive 
recent reviews of mathematical models for rotorcraft 
aeromechanics can be found in Refs. (4] and (5]. 

Zhao and Curtiss (6] have derived a set of lin­
earized equations by analytic linearization of a nonlin­
ear model formulated using Lagrange's equations. The 
computerized symbolic manipulation program MAC­
SYMA was used for the formulation of both the non­
linear and the linearized model. The model includes 
24 or 27 states depending on whether or not dynamic 
inflow is included. Flap and lag degrees of freedom are 
modeled in the nonrotating frame, using a multiblade 
coordinate transformation and retaining the collective 
and the first two cyclic modes for each degrees of free­
dom. Engine dynamics is not included. In forward 
flight, a flat vortex wake model is used to capture some 
of the effects of the main rotor wake on the tail sur­
faces and the tail rotor. The linear model is validated 
by comparing the predicted responses to step inputs 
of the various controls with flight test data, for both 
hover and forward flight conditions. 

Another set of linearized equations is discussed by 
Schrage et a/. (7]. The mathematical model imple­
mented in the ARMCOP code [8], which contains the 
six rigid body degrees of freedom of the fuselage, three 
rotor flapping and the rotor speed degrees of freedom, 

was extended to include the flapping, lead-lag and dy­
namic inflow degrees of freedom, for a total of 15 de­
grees of freedom and 23 states. The linearization was 
partly performed analytically using MACSYMA, and 
partly numerically using finite difference approxima­
tions. The nonlinear model is validated by compar­
ing predicted responses to step and impulse inputs of 
cyclic and collective pitch with flight test results. The 
linearized model, for which no validation results are 
presented in the paper, is used to carry out a study 
of the effects of model complexity on the poles of two 
helicopters. Results are presented for near hover and 
forward flight conditions. 

Miller and White (9] formulate a nonlinear set of 
equations of motion in analytical form, using "Expo­
nential Basis Functions" (EBF) to simplify the im­
plementation of the sequence of coordinate transfor­
mations usually required in the formulation of cou­
pled rotor-fuselage models. Through the use of EBF, 
a time-dependent coordinate transformation can be 
written as product of constant matrices and matrix 
exponentials. The latter can be multiplied by sim­
ple addition of the arguments, and can be differenti­
ated easily. The equations of motion are formulated 
starting from Lagrange's equation, and a multiblade 
coordinate transformation is carried out to transform 
the rotor degrees of freedom into a nonrotating sys­
tem. The nonlinear equations are linearized analyt­
ically. The total number of states is not mentioned 
explicitly, however rotor rigid body flap and lag de­
grees of freedom, as well as engine RPM and inflow 
dynamics are modeled, besides the fuselage rigid body 
degrees of freedom. Some validation results are pre­
sented. They include comparison of selected poles, and 
of time histories following longitudinal cyclic pitch in­
puts, with flight test results. 

A linearized model based on the GENHEL 
code [10] is discussed by Diftler (11 J in the context of 
an investigation of roll rate gain limitations for a sta­
bility augmentation system. A 13 degree of freedom 
model for fuselage, rotor flap and lag, rotor speed, and 
inflow is used with a total of 23 states. The lineariza­
tions are performed numerically by perturbing each of 
the states, and using finite difference approximations. 
Because of the peculiar implementation of the flight 
dynamics model in GENHEL, which will be discussed 
in the next section, the formulation of the perturba­
tion scheme is not straightforward. The details of the 
procedure presented in the paper are rather sketchy, 
especially as to the coupling between the rotor and the 
fuselage degrees of freedom. No validation results are 
presented for the linearized model. 

This model was subsequently extended to include 
the dynamics of an externally suspended load, and 
three elastic bending modes of the fuselage for a total 
of 42 states. Ref. [12] presents the results of a correla­
tion study, in which frequency response plots obtained 
using both GENHEL, and the linearized model ex­
tracted from GENHEL, are compared with flight test 
data for a CH-53 helicopter. The region between 1 and 
3 Hz emerges as the most critical, with rotor dynam­
ics identified as a major possible cause of discrepancy 
between theory and experiment. 

The main objective of this study is to formu-
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late and validate a high-order linearized mathemat­
ical model of helicopter stability and control. This 
linear model is intended to be used in the design of 
advanced flight control systems based on new, power­
ful tools of multi variable feedback control system de­
sign. Because many of these tools are applied in the 
frequency domain, particular emphasis will be given 
to the validation of the linearized model through com­
parisons with frequency response data extracted from 
flight tests. The nonlinear simulation program GEN­
HEL is used as the starting point for this study be­
cause this program is representative of the state of the 
art in helicopter simulation modeling, and because an 
extensive knowledge base has been developed in re­
cent years, including comprehensive validation of the 
program with flight test results [13]. 

An additional objective of this study is to assess 
the accuracy of lower order linear models that may be 
extracted from the full size one. Because these models 
are expected to be used in the context of flight con­
trol system design, it is very important to determine 
what is the lowest order of the model that can be used 
reliably in the design process. 

Mathematical model 

Nonlinear mathematical model 
The nonlinear mathematical model of the heli­

copter is based on the model originally implemented 
in the GENHEL computer program, as described in 
Ref. [10]. A series of modifications were carried out by 
Ballin [13], especially in the area of engine and drive 
train modeling, to improve the fidelity of the model. 
This upgraded version of GENHEL represented the 
starting point of the present study, and will be re­
ferred to in this paper as "GENHEL". The computer 
program that implements the modifications described 
in this section will be referred to as "UM-G ENHEL". 

A detailed description of the mathematical model 
implemented in GENHEL is beyond the scope of this 
paper, and only a brief outline is presented below. 
The fuselage is modeled as a rigid body. The rotor 
blades are individually modeled as rigid bodies un­
dergoing flap and lag motion. Torsional deformations 
are taken into account approximately using a pseudo­
modal approach with empirically derived modal co­
efficients. Rotor airmass dynamics is included. The 
aerodynamic forces on the rotor are calculated using 
blade element theory and quasi-steady aerodynamics. 
Airfoil lift and drag characteristics are provided in tab­
ular form as functions of angle of attack and Mach 
number. The aerodynamic characteristics of fuselage 
and tail surfaces are also provided in tabular form, as 
functions of the angle of attack. In general, the model 
covers a wide range of angles of attack, sideslip, and 
inflow, and small angle assumptions are not invoked 
for fuselage attitudes and aerodynamic incidence an­
gles. 

The model includes a detailed description of the 
propulsion system; in the present study, however, main 
rotor speed was assumed to be constant, and not a de­
gree of freedom. Furthermore, this study is concerned 
with the bare airframe dynamics, therefore the flight 

control system was assumed to be inoperative. Finally, 
it should be noted that although GENHEL is designed 
for real-time execution, no specific attempt to main­
tain this feature was made in modifying the computer 
program for the purpose of this study. 

The mathematical model of the helicopter, as im­
plemented in GENHEL, was not strictly in first-order, 
state variable form. Therefore a number of modifica­
tions were necessary in order to carry out a theoret­
ically rigorous linearization. These modifications are 
described below. 

Synchronization of solution 
In GENHEL, the calculation of forces and mo­

ments acting on the helicopter at a given instant in 
time is conducted sequentially, with the equations of 
motion of the rotor being solved first, and the equa­
tions of motion of the fuselage being solved next [10]. 
Therefore, the calculation of the various portion of the 
right hand side of the ordinary differential equations 
(ODE) of motion is not performed simultaneously. It 
is possible that this lack of synchronization may cause 
inaccuracies in the solution, especially at higher fre­
quencies, and introduce numerical phase lags. Fur­
thermore, splitting the solution process complicates 
somewhat the task of perturbing the states, in order 
to obtain linearized information using finite difference 
approximations. Therefore, the first modification to 
GENHEL consisted in an extensive restructuring of 
the program, to bring together the solutions of the ro­
tor and of the fuselage equations of motion so as to 
solve the entire system of ODE simultaneously. 

Extraction of hidden states 
The implementation of the mathematical model of 

the helicopter in GENHEL is such that the program 
contains a certain number of "hidden states'', associ­
ated with the main rotor inflow dynamics, with the 
torsional dynamics of the main rotor blades, and with 
the modeling of the delay of wake effects on the tail 
surfaces and the tail rotor. The ODE describing the 
first two phenomena are solved using simple numeri­
cal schemes that are embedded in the calculation of 
the aerodynamic loads of the rotor. While not neces­
sarily incorrect, this separate solution procedure relies 
on the facts that the integration step used to solve the 
ODE of rotor and fuselage is fixed, and that only one 
evaluation of the right hand side is performed at each 
integration step. This precludes the use of variable­
step ODE solvers, and complicates greatly the use of 
ODE solvers that require more than one function eval­
uation per step. The delayed effects of the main rotor 
wake on the tail surfaces and the tail rotor are mod­
eled through a pure time delay, expressed as a function 
of the (fixed) integration time step. Here the hidden 
states are those required to model approximately the 
time delay in state variable form. 

A theoretically rigorous process of linearization re­
quires that no hidden states be present, to avoid con­
tamination of the linearized information. Therefore, 
another modification to GENHEL consisted in iden­
tifying and making explicit these hidden states. This 
was accomplished as follows: 

1. GENHEL uses a cosine type approximation to 
the nonuniform inflow over the main rotor. The 
inflow dynamics is implemented numerically in 
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a discrete form of the type: 

with 

More precisely, the main rotor inflow -' is defined 
as the difference between the airflow velocity p, 
through the disk due to the advance ratio and 
the total downwash Vt-At at the previous inte­
gration time step: 

(3) 

The downwash dynamics is described by the fol­
lowing equation: 

where 

Cs = 

p!:.t 
T 

1-c1(1+~) 
p!:.t 

T 

( 4) 

The discrete form of Eq.(1) is reformulated in 
UM-GENHEL in the following continuous form: 

. 1---;=~G~T == (5) rv+v =-
2 J 1-'~ + 1-'~ + "' 

with r = 0.05. The total inflow v is added the 
vector of states, and the inflow -' is given by: 

"= p,- v (6) 

2. Blade torsion is taken approximately into ac­
count in GENHEL, using a pseudo-modal ap­
proach. First a tip dynamic twist ODYN is cal­
culated in a form of the type: 

ODYN(t+!:.t) = 
B 

= (Cd C,p) L JF:j.(t) + Ff,(t) (7) 
n=l 

where B is the number of blades, C1 and C, 
are empirically derived factors, and FT and Fp 
are functions of the tangential and perpendicu­
lar forces acting on the blade. Then ODYN is 
multiplied by a torsion mode shape, to obtain 
a spanwise variation of dynamic twist which is 
applied identically to each rotor blade regardless 
of its azimuth angle. 

Eq.(7) was made continuous by rewriting it in 
the following way: 

ODYN 2( · 
~ + --r:;ODYN + 8DYN = 
W9u W(Ju 

B 

=(CdC,p)'£VFf:+Ff, (8) 
n:::::l 

with ( = 0.3 and wo = 5.5/rev. No attempt 
was made to modify the theory behind Eq.(7). 
Eq.(8) now introduces two extra states, namely: 

3. The delay with which the main rotor downwash 
reaches the tail surfaces and the tail rotor is 
modeled in GENHEL in the form: 

v11(t) = v(t- n!:.t) (9) 

in which vis the main rotor downwash, VH is the 
inflow at the tail, and n!:.T is the time the rotor 
downwash takes to reach the tail. This equation 
was modified with the substitution of the delay 
with an exponential lag: 

(10) 

with r11 = 0.001. The modification introduced 
the explicit state A11 . 

Treatment of acceleration terms 
In GENHEL, the equations of motion are imple­

mented in the form: 

y = g(y,y;t) (11) 

that is, the vector y appears both on the right and the 
left hand side of the equal sign. This form is due to the 
presence of body acceleration terms in the calculation 
of the inertia loads acting on the rotor blades, and 
complicates considerably a correct derivation of a set 
of linearized equations of motion. 

A rigorous first-order form of the equations of mo­
tion was derived for implementation in UM-GENHEL. 
All the terms containing components of y were iden­
tified, and Eq. (11) was rewritten in the form: 

y = [E(t)]y + g1 (y; t) (12) 

from which the required first-order form could easily 
be obtained as: 

y = ([I) - [E(t)]) -I g1 (y; t) = f (y; t) (13) 

Modeling of lag dampers 
The forces generated by the lag damper are a non­

linear function of the axial velocity of compression or 
extension of the damper. The nonlinear force-velocity 
relationship is implemented through a table look-up 
procedure. The distance rD between the hub pickup 
and the blade pickup is given by [10]: 

rD = f({J,(,Oa) = )X2 + Y2 + Z' (14) 
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with: 

X = asinP + bcos (( + (o) cosP + c 
+dsin (( + ( 0 ) cosP (15) 

Y -rcos8a-bsin((+(o) 

+dcos((+(o) (16) 
Z -· acosP- rsinOa- bsinPcos(( + (o) 

-dsinpsin (( + ( 0 ) (17) 

where a) b, c, d, and r are known constants. 
In GENHEL, the axial velocity ''D is computed 

using a finite difference approximation: 

rf) = f(p,(,Oa)t- f(P,(,Oa)t-t.t (18) 
tlt 

that is implemented in such a way that the time step 
tlt must be fixed, and only one evaluation of the states 
P and ( must be performed per time step. Therefore 
the modeling of the axial velocity of the damper intro­
duces problems similar to those of the hidden states 
discussed previously. 

In UM-GENHEL the dependence of rD on states 
and controls at the previous time step is eliminated by 
deriving analytic expressions: 

rv =- X-+Y-+Z-. 1 ( aX aY aZ) 
rv. at at at 

(19) 

The rate of change Ba of the blade pitch angle required 
to calculate i·v is given by: 

oa = Oo + (o,, +no") cos 1/J + (o,, -no,,) sin 1/J 

(20) 
Modification of ODE solution algorithm 
The equations of motion of the rotor in GENHEL 

are solved using a specially developed algorithm [10], 
based on the assumption that the blade motion is pe­
riodic. For example, for the flapping equation it is: 

·· sintl>f; . 
= p,_ 1-n- + p,_ 1 costl>f; (21) 

sin tl.>f; · 1- cos tl.>f; ·· 
= p,_, + -n-p,_, + n 2 p,_(22J 

in which tl.>f; = nt>.t. A similar solution scheme is used 
for the lag degree of freedom (. While the assumption 
of periodic motion is reasonable for a wide range of fre­
quencies of interest in flight mechanics, it may be inac­
curate for the fast, high frequency transients that can 
potentially occur in helicopters equipped with high­
gain flight control systems. 

The equations of motion of the fuselage are inte­
grated in GENHEL by using a fixed-step scheme: 

used as a second order method with e0 = 3, e1 = -1, 
and e2 = 0, or as a third order method with eo = 
3.602902,et = -2.454456, and e2 = 0.851554. The 
Euler attitudes of the fuselage are obtained through 
an ad-hoc integration scheme, outlined here for the 

pitch attitude 0: 

Qn+l = qn + tlt (eo4n + ettin-! + e2<in-2) (24) 

rn+l = rn + tl.t (earn+ et>'n-! + e2>'n-2) (25) 

Bn+l = qn+l COS <Pn - rn+l sin ¢n (26) 

Bn+l = On+ tl.t (eoOn + etOn-! + e2Bn-2)(27) 

The modifications to GENHEL described previ­
ously make it simple to use general purpose ODE 
solvers. Therefore, both the special purpose solution 
algorithm for the rotor and the solution algorithm for 
the fuselage have been abandoned in UM-GENHEL, 
in favor of the sophisticated variable step, variable or­
der Adams-Bashforth solver DE/STEP [14]. 

Transformation of rotor states into nonro· 
tating coordinate system 

Although not required for a correct solution of the 
equations of motion of the helicopter, it is customary 
to define the rotor states in a nonrotating coordinate 
system. In GENHEL, however, both the rotor states 
and the blade equations of motion are written in a 
rotating coordinate system. In order to minimize the 
differences between GENHEL and UM-GENHEL the 
equations of motion remain formulated in the rotat­
ing system, and the integration is conducted in the 
rotating system as well. However, at each integration 
step a multiblade coordination transformation can be 
performed, so that the output of the rotor states can 
be either in the rotating or the nonrotating system, 
depending on the user's choice. 

The mathematical model in GENHEL is composed 
of a total of 17 degrees of freedom: 3 rigid body trans­
lations and 3 rigid body rotations for the fuselage, 
flap and lag angular motion for each of the four rigid 
blades plus a pseudo-torsion degree of freedom, inflow 
dynamics, and delay of downwash effects on the tail. 
The total number of states is 29, with the state vector 
defined as follows: 

y R = l u v w P q r </> 8 >f; Pt P2 Pa (34 ~~ /J, ~a ~. 
(t (2 (a (4 (, (2 (a (. 

,\ AH <Pt ¢2 F (28) 

The multiblade coordinate transformation of the 
flap degree of freedom for a four-bladed rotor yields 
four degrees of freedom: a collective Po, two cyclic P1, 

and P1, and a reactionless degree of freedom P2 (15]. 
Similar results are obtained for the lag degree of free­
dom. The reactionless degrees of freedom don't af­
fect directly the hub loads because they correspond to 
modes in which the resultant hub forces and moments 
are equal to zero, and are sometimes ignored on the 
analysis [6],[12]. However, they may affect the solu­
tion for the rotor motion, and for this reason they have 
been retained in the model. Thus, when the output 
of the rotor quantities is provided in the nonrotating 
system, the state vector becomes: 

YNR = [u v w p q r </> 0 >f; f3o p,, Pt. !32 

~o ~~' ~~. ~2(o (t, (,, (2 
. . . . T 

(o (,, (~. (2 ,\ >.n 1>1 1>2 J (29) 
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The vectors YR and YNR are related by: 

YR = (TJYNR (30) 

where: 

[T" 
0 JJ [T] = ~ T22 
0 

and 

T11 = (I] (size 9 by 9) 

T22 [ [~] 0 ] [TJ] 

T33 = [I] (size 4 by 4) 

with 

1 cos,P sin,P -1 
1 -sin 1/J cos 1/J 1 
1 - cos,P -sin 1/J -1 

[T,] = 1 sin 1/J -cos 1/J 1 
0 -!1 sin 1/J n cos,P 0 
0 -flcos,P -!1 sin ,P 0 
0 n sin 1/J -n cos.;, 0 
0 n cos.;, n sin 1/J 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 cos 1/J sin 1/J -1 
1 -sin 1/J cos 1/J 1 
1 -cos 1/J -sin 1/J -1 
1 sin,P -cos 1/J 1 

Linearized mathematical model 
The main reason for the changes in formulation, so­

lution, and implementation of the mathematical model 
described in the previous section was to cast the model 
in a rigorous first-order, state variable form of the 
type: 

y = f(y,u;t) (31) 

With the equations in the general form of Eq. (31), a 
linearized model suitable for flight control design ap­
plications can be obtained through a first order Taylor 
series expansion: 

with 

[&f] Ll.y + [of] Ll.u 
{)y Y=Ytrim Ou U=Utrim 

+0 (II Ll.y II', II Ll.u II') (32) 

Ll.y = Y - Ytdm 

.6.u = u- Utrim 

(33) 
(34) 

Of course it is also: 

(35) 

In the present study, the perturbation matrices in 
Eq. (32) are calculated using finite difference approx­
imations. Therefore, the linearized model extracted 
from GENHEL has the form: 

Ll.Y = (F]Ll.y + (G)Ll.u (36) 

with: 

[F] = [of] Ll. 
oy Y=Y.,,m y 

[ Ll.f] Ll. 
Ll.y Y=Y,,.m y 

(37) 

[G) = - Ll.u [&f) 
{Ju U=Utrlm 

[Ll.f] Ll.u 
~U U=Utt!m 

(38) 

The elements /;; and g;; in the i-th row and j-th col­
umn of [F] and [G] are respectively: 

9ij = 

/; (Ytrim + flj, Utrim, t) - /; (Ytrim, lltrim, t) 
6; 

9i (Ytrim, Utrim + 8j, t) - Ui (Ytrim, Utrim, t) 
6; 

where hi is a vector with all its elements equal to zero, 
except for the j-th which is equal to a small number. 

It should be noted that completely analytical for­
mulations of the matrices of derivatives are impracti­
cal for mathematical models that make extensive use 
of look-up tables such as the one used in GENHEL. 
Furthermore, changes in selected portions of the math­
ematical model can be implemented much more easily 
when the derivatives are calculated numerically. These 
benefits were judged to outweigh the better physical 
insight offered by analytically derived (F] and (G) ma­
trices. 

The perturbations of the rotor degrees of freedom 
required to calculate the matrices (F] and (G] are ap­
plied in the rotating coordinate system. Therefore the 
notation y R should be assumed throughout for the 
state vector in Eqs. (31) through (38). The linearized 
matrices, however, can be provided by UM-GENHEL 
entirely in the nonrotating system if required. The 
model then takes the form: 

in which it is: 

LlYNR = YNR- YNRtdm 

LlYNR = YNR- YNRtrim = YNR .__,__, 
=0 

( 40) 
( 41) 

The perturbation matrices [FNR] and [GNR] in the 
nonrotating frame are obtained from the matrices (F] 
and (G) through the transformations 

[FNR] = (T]- 1 ((F](T]- (TJ) 
[GNR] = (T]- 1(G) 

( 42) 

( 43) 
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in which the coordinate transformation matrix [T] is 
the same as in Eq. (30). 

Finally the control vector ~u is defined as: 

. . . . T 
~u = LOo O,, O,, O, Oo O,, 0~> O, J ( 44) 

All the components of the vector are to be intended 
as perturbations from the respective trim values. The 
presence of time derivatives in Eq. ( 44) is required 
for a correct modeling of the lag damper, Eqs. (19) 
and (20). 

Reduced order linearized models 
The reduced order models are generated by UM­

GENHEL using the following algorithm. First, the 
linearized equations of motion are rearranged and par­
titioned as: 

(45) 

where ~Yn and ~YD are respectively the vector of 
states to be retained and to be discarded. Then the 
matrix products are expanded, and the vector 6.Yv is 
set equal to zero, to obtain: 

~Yn = Fnn~Yn+FnD~YD-1-Gn~u (46) 

~YD = FDn~YR + FDD~YD + GD~U 
= 0 (47) 

The vector ~Yp can now be obtained in terms of 
~YR from Eq. ( 47) and substituted back into Eq. ( 46) 
to obtain the equations of motion for the reduced order 
model in matrix form: 

~Yn = (Fnn- FnDFi)tFDn) ~YR 

+ ( Gn- FnDFi)tGD) ~u (48) 

that can be rewritten more compadly as: 

(49) 

Results 

This section presents results that were derived to 
validate the UM-GENHEL computer code. As far as 
the nonlinear model is concerned, it should be empha­
sized that an improvement of the accuracy of UM­
GENHEL, compared with GENHEL, was not one of 
the specific objectives of this study. Therefore the non­
linear portion of UM-GENIIEL should be considered 
validated if the results show a good agreement with 
the original GENHEL. Such a validation was success­
fully conducted, although no results are presented in 
this paper. The linear portion of UM-GENHEL is the 
most important new contribution, and the main focus 
of this study. The validation of this portion consists in 
a comparison with the results obtained using the non­
linear version of GENHEL, and with flight test results. 
All the results presented in this section refer to a Siko­
rsky UH-60 helicopter in hover, with the flight control 
system turned off (bare airframe configuration). 

Frequency domain validation 
Figures 1 through 10 show frequency response plots 

for a hovering flight condition. The curves marked 

"Linearized UM-Genhel" indicate the results obtained 
using the linearized model described in this study. The 
curves marked "Non-Linear Genhel" were obtained 
from analytical results generated by the original GEN­
IIEL, through system identification techniques (16]. 
For these curves, as well as those obtained from flight 
test data (and correspondingly marked on the plots) 
the frequency band for which the identification is con­
sidered accurate is also indicated in the figures. This 
assessment is based on the evaluation of the coherence 
function 'Y;y, defined as: 

2 IGxyl2 

1
"" = I II I G .. Gyy 

(50) 

where G,., Gyy, and Gxy are respectively the input, 
output, and cross-spectral density estimates. A de­
tailed discussion of the properties of the coherence 
function, as they pertain to the present study, can 
be found in Ref. (17]. The frequency response results 
presented in this section are considered accurate if the 
coherence function has a value 

The comparison for the roll-rate response p to lat­
eral cyclic input 01, is presented in Figures 1 and 2. 
As far as the amplitudes are concerned, between 2 
and 10 rad/sec the linearized UM-GENHEL model 
performs as well as the identified model, and both 
show good agreement with flight test data. At lower 
frequencies UM-GENHEL reduces the overprediction 
compared with GENHEL, but exhibits a large peak 
corresponding to a lateral body mode of frequency 
wn = 0.529 rad/sec and damping ( = 0.014. This 
peak is not shown either by the identified GENHEL 
model or by the flight tests. At higher frequencies, 
the UM-GENHEL again reduces the overprediction 
of the identified model, and captures slightly better 
the frequency of the notch response associated with 
the regressive lag mode, although the predicted drop 
in magnitude is greater. (The portion of the plot be­
tween the frequencies of 10 and 30 rad/sec is shown 
enlarged in Figure 3.) The phase responses are com­
pared in Figure 2. Above 0.6 rad/sec, the two analyt­
ical models and the flight test show the same type of 
variation with frequency. The phase lag of the identi­
fied model is consistently higher than that of the flight 
tests, and a slight further increase is shown for UM­
GENHEL. Below 0.6 radfsec the phase predictions of 
the linearized UM-GENHEL are poor, and are again 
dominated by the lowly damped lateral body mode. 

The amplitude and phase of the pitch rate re­
sponses q to longitudinal cyclic input 01, are com­
pared in Figures 4 and 5 respectively. A very good 
agreement is shown in the prediction of amplitudes, for 
frequencies between 1 and 5-6 rad/sec, between both 
analytical models and the flight test results. At lower 
frequencies the two analytical models are fairly close, 
but both overpredict the response considerably. For 
frequencies above 5 rad/sec UM-GENHEL is in better 
agreement with flight tests than the identified model. 
Both analytical models predict much higher gains in 
the 16-20 radjsec band around the natural frequency 
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of the lag regressive mode. The phase lag of the identi­
fied model is consistently higher than that of the flight 
tests, and a slight further increase is shown for UM­
GENHEL. Large errors appear above 15 rad/sec, with 
UM-GENHEL improving rather substantially over the 
identified model. 

The vertical response w to collective pitch input 
Oo is shown in Figures 7 and 8 for amplitude and 
phase respectively. The quality of the amplitude pre­
dictions of the two analytical models is comparable, 
with the UM-GENHEL model slightly underpredict­
ing the gains at higher frequencies. On the other hand, 
rather large phase differences can be observed between 
the UM-GENHEL predictions and the flight test data, 
with phase delays larger by 20 to 40 degrees through­
out the 0.5 to 10 rad/sec frequency band. 

The amplitude of the yaw rate response r to tail 
rotor collective input 8, predicted by the linearized 
UM-GENHEL is in the same or better agreement with 
flight tests than that predicted by the identified model, 
as shown in Figure 9. An improvement is especially 
noticeable in the phase response, shown in Figure 10. 
While UM-GENHEL does not capture accurately the 
sharp rises of magnitude and phase that occur at fre­
quencies above 10 rad/sec, the agreement with flight 
data is substantially improved over that of the identi­
fied model. 

Finally, the poles calculated using the linearized 
U M -G ENHEL model are presented in Figure 11. A 
portion of the plot, which contains most of the fuselage 
poles, is shown enlarged in Figure 12. Frequency and 
damping of each mode are also presented in tabular 
form in Table 1. 

Assessment of reduced order models 
The primary objective of the work described in this 

paper was to derive a linearized simulation model of 
helicopter flight mechanics that was suitable for flight 
control system design applications. It is therefore im­
portant to determine what the lowest order of the 
model is that still describes the helicopter dynamics 
with sufficient accuracy. This section presents the ini­
tial results of a systematic study of reduced order mod­
els, obtained as described previously in the paper. 

Frequency response plots of on-axis responses in 
roll, pitch, heave, and yaw are presented in Figures 13 
through 20, for three models of decreasing order. The 
curves marked "Linearized UM-Genhel" refer to the 
results of the full-order, 29 state linearized model. The 
curves marked "UM-Genhel (21 states)" refer to a 21 
state model obtained by removing the states describ­
ing dynamic twist (two), reactionless flap (two), reac­
tionless lag (two), delayed effect of downwash on tail 
(one), and dynamic inflow (one). The corresponding 
state vector is therefore: 

YNR,. = lu v w P q r ¢> 0 1/J f3o {3,, {3,, ~o ~le ~" 
. . . T 

(o (,, (,, (o (,, (,. J 

Finally, the curves marked "UM-Genhel (9 states)" 
refer to a simple six degree of freedom model, with 
quasi-steady representation of the rotor and no inflow 
dynamics. The state vector for this case is: 

YNR, = luvwpqr¢>01/JF 

As expected, the 9-state model is inaccurate for 
frequencies above 1-2 rad/sec and does not capture 
the characteristics of the frequency response that are 
dominated by the rotor dynamics. Therefore this sim­
plified model is inadequate for the design of high-gain 
flight control systems. The 21-state model, on the 
other hand, appears to have essentially the same accu­
racy as the 29-state model, with the partial exception 
of the vertical dynamics. It is reasonable to expect 
little or no effect from the deletion of the four states 
associated with the reactionless flap and lag modes 
because these modes generate zero net forces and mo­
ments on the rotor. The dynamic twist states have 
a natural frequency much higher than the frequencies 
of interest (see Table 1 ), and can also eliminated with 
negligible loss of accuracy. It should be kept in mind, 
however, that the six rotor states eliminated in the 
21-state model may become important in flight condi­
tions at the edges of the flight envelope, because they 
affect the rotor dynamics, and therefore the magni­
tude of dynamic stall and compressibility effects. The 
state corresponding to dynamic inflow should not be 
eliminated. Instead, the results presented in Ref. [16] 
clearly show that better agreement with flight test can 
be obtained by increasing the states to the three re­
quired by Pitt-Peters' dynamic inflow model [18]. 

Summary and Conclusions 

A high-order linearized mathematical model of he­
licopter flight dynamics was formulated; this model de­
scribes both the fuselage and the rotor dynamics, and 
is therefore suitable for the design of advanced flight 
control systems based on modern multivariable con­
trol theory. The model was extracted from a state-of­
the-art, nonlinear time domain simulation code. This 
study indicates that great care has to be exercised 
in applying perturbation schemes to such codes, and 
that the underlying theory must be fully understood. 
The solution of the equations of motion of the aircraft 
has to be conducted in a synchronized manner, and 
possible "hidden states" must be identified and made 
explicit. A number of modifications of the nonlinear 
computer code were carried out, to make its theoreti­
cal base more rigorous and sound. 

The linearized model was validated by comparing 
its results in the frequency domain with those ob­
tained from a linearized model extracted from the orig­
inal GENHEL through parameter identification tech­
niques, and with flight test results. The comparison 
shows that, in general, the linearized UM-GENHEL 
model performs as well as, or better than, the identi­
fied model. A slightly higher phase delay in the roll 
rate response, and a higher phase delay in the heave re­
sponse, observed using the linearized UM-GENHEL, 
will require further study. 

In conclusion, the results presented in this report 
indicate that UM-GENHEL, with its ability to pro­
vide both nonlinear and high-order linearized simula­
tion capabilities, is a promising new tool for the design 
of advanced helicopter flight control system. 
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Real Imaginary Frequency 
Mode type part part Wn (rad/se~) Wn (/rev) 

Lateral -0.043207 0 
Longitudinal -0.93215 0 
Longitudinal -6.9601 0 
Down wash -18.187 0 
Downwash on Tail -142.86 0 
Lateral -0.22001 ±0.0457 0.225 
Longitudinal 0.10545 ±0.37829 0.393 
Lateral -0.0072755 ±0.52892 0.529 
Regressive Flap -6.477 ±2.3659 6.896 
Collective Lag -3.0779 ±6.9107 7.565 
Reactionless Lag -7.9165 ±3.6605 8.722 
Regressive Lag -3.699 ±18.862 19.221 
Collective Flap -7.5054 ±25.82 26.889 
R.eactionless Flap -11.074 ±25.448 27.753 
Progressive Lag -5.5555 ±37.858 38.263 
Progressive Flap -11.163 ±52.295 53.473 
Dynamic Twist -47.582 ±159.92 166.849 

Table 1: Poles of the helicopter in hover 
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Figure 1: Bode amplitude plot of roll rate output p to 
lateral cyclic pitch input O,,. 
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Figure 3: Detail of Bode amplitude plot of roll rate 
output p to lateral cyclic pitch input O,,. 
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Figure 2: Bode phase plot of roll rate output p to 
lateral cyclic pitch input 01,. 
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Figure 4: Bode amplitude plot of pitch rate output q 
to longitudinal cyclic pitch input 01,. 
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Figure 5: Bode phase plot of pitch rate output q to 
longitudinal cyclic pitch input Bh. 
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Figure 7: Bode amplitude plot of vertical acceleration 
output w to collective pitch input Bo. 
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Figure 8: Bode phase plot of vertical acceleration out­
put w to collective pitch input Bo. 
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Figure 9: Bode phase plot of yaw rate output r to tail 
rotor collective pitch input 01• 
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tail rotor collective pitch input O,. 
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Figure 11: Poles of the helicopter 
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Figure 12: Poles of the helicopter-Detail of fuselage 
poles 
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Figure 13: Bode amplitude plot of roll rate output 
q to lateral cyclic pitch input 81, for reduced order 
simulation models. 
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Figure 14: Bode phase plot ofroll rate output q to lat­
eral cyclic pitch input 81, for reduced order simulation 
models. 
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Figure 15: Bode amplitude plot of pitch rate output q 
to longitudinal cyclic pitch input 811 for reduced order 
simulation models. 
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Figure 16: Bode phase plot of pitch rate output q to 
longitudinal cyclic pitch input eh for reduced order 
simulation models. 
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Fignre 17: Bode amplitude plot of vertical acceleration 
output w to collective pitch input Oo for reduced order 
simulation models. 
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Fignre 18: Bode phase plot of vertical acceleration 
output w to collective pitch input Oo for reduced order 
simulation models. 
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Figure 19: Bode phase plot of yaw rate output r to 
tail rotor collective pitch input 01 for reduced order 
simulation models. 
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Fignre 20: Bode phase plot of yaw rate output r to 
tail rotor collective pitch input O, for reduced order 
simulation models. 
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