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Abstract 

In addition to an intensive theoretical research it is necessary to 
verify and expand theoretical results with proper and sufficient testing 
in order to obtain improvements for the design of new helicopter systems. 
Therefore, in the DFVLR Institute for Flight Mechanics a rotor test stand 
for testing in large wind tunnels is operated. One of the measurement tools 
at this rotor· test stand is the six component balance, that measures the 
six rotor forces and moments. As highly dynamic forces and moments have to 
be determined, the response of the balance is strongly dependent on the ei­
genfrequencies and damping in the system. 

This paper concentrates on the estimation of the dynamic characteris­
tics of the balance. Th~-system rotor/balance is treated as two subsystems 
so that the balance can be considered as an isolated system. Three differ­
ent methods are used for the determination of the dynamic characteristics: 

e A mathematical model with six degrees of freedom. 

e A transfer function measurement technique at the real system. 

e Two system identification techniques (Least Squares and Maximum 
Likelihood method, both working in the frequency domain). 

1 , INTRODUCTION 

Wind tunnel testing with Mach scaled model rotors becomes more and 
more important for basic research and design of advanced helicopters. Often 
not only the steady state behaviour of the rotor system are of interest 
but also the dynamic characteristics in the case of various improving means 
i.e. new blade planforms and profiles, blade modal shape turning, higher 
harmonic control concepts and bearingless rotor systems. One possible way 
to get information about the dynamic response is to measure the blade 
bending and torsion moments using strain gauge bridges on the blades. These 
sensors in the rotating system are not able to measure the exact shear 
forces in the blades. So the calculation of the net rotor forces and mo­
ments from these signals becomes incorrect. 
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It is a common practice to measure the steady state rotor forces and 
moments by a balance which is normally located in the fixed system [1]. All 
forces transfered through the balance are measurable. The calibration pro­
cedure of such balance can be very time consuming if highly couplings and 
nonlinearities occure in the system [2]. Nevertheless the desired set of 
equations in matrix notation is 

In this equations f
0 

is the vector of the rotor forces and moments i.e. 

6 X 1 

and s
0 

the vector of the sensors 

n x 1 • 

The matrix T describes the kinematic and electric relations between 
the sensor output (i.e. Volts) and the rotor forces and moments. 

It is not necessary that the sensor vector contains only as many ele­
ments as the force vector. So the matrix T has the dimension 6 x n. Normal­
ly the calibration procedure cannot give directly the elements of the ma­
trix. For calibration, the balance will be loaded by increasing and de-

··· creasing the six components of the vector f
0 

individually. So one get each 
element in the i-th column of the C

0 
matrix by a linear regression analysis 

of the calibration data set. 

After six steps the matrix C
0 

is determined and one can write for the 
linear case 

dim so = n 
dim fo = 6 
dim co n X 6 

if n 6 

if n) 6 . 
If the balance system contains nonlinearities it is necessary to cali­

brate around the trim conditions i.e. a desired lift and torque. The cali­
bration becomes very time consuming and results in a set of T matrices 
which are valid only for the particular trim cases. 
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A more difficult case arises if it is necessary to measure the dynamic 
loads of a rotor system. Now the balance must be considered as a dynamic 
system with eigenfrequencies and eigenmodes. The measured loads are depend­
ent on the dynamic system response. Several methods are existing to handle 
such problems e.g. 

o mathematical models with the most important degrees of freedom, 

o transfer function measurement technique at the real system, 

o system identification techniques for determining the system 
matrices from measurements. 

The application of these three techniques to the balance are described 
and the results were discussed. 

2. THE SIX-COMPONENT BALANCE 

Figure 1 shows the six component balance which is implemented in the 
rotor test stand (RTS) at the DFVLR Institute for Flight Mechanics. The 
balance is designed to measure the static and dynamic loads. This extended 
capability is achieved by a specific design. The principle of this balance 
is shown in Fig. 2. The construction consists of two steel plates, one 
lower plate and an upper plate which are connected via the force transducer 
systems. Four sensor equipments operate in z-direction, two in y-direction 
and one in x-direction. Additional a torque indicator is installed in the 
rotor shaft below the upper plate. 

Each force transducer assembly is fitted with two strain gauge load 
cells and one piezo-electric force tranducer as shown in Fig. 3. The two 
strain gauge load cells are mechanically biased to operate at the middle of 
the characteristic curves to eliminate the hysteresis error which occurs 
around zero force. The electrical outputs of the cells are combined to form 
one signal whose voltage level is proportional to the loads. Calibration 
tests have shown that the linearity error in case of static laod is better 
than 0,1 % of full range of 5000 N. 

Generally a strain gauge load cell is able to measure static and dy­
namic loads. But in this case of application, the range of the dynamic 
forces can be very small in contrast to the static forces. To achieve a 
good sensitivity to dynamic loads a piezo-electric load cell is installed. 
In Fig. 4 typical frequency response curves of a strain gauge and a piezo­
electric load cell are recorded. It shows the very good accuracy of the 
piezo-electric load cell while the strain gauge signal is distorted over 
the tested frequency range. 

One problem in the design of multi component balances is the decou­
pling of the particular force and moment components. For the dedicated ba­
lance, flexible beams are fitted between the strain gauge and the piezo­
electric cells. In this way the influences of shear forces are eliminated 
because they are smaller than the resolution of the load cells. In addition 
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the design principle allows a fully decoupling of the rotor torque and the 
other rotor forces and moments. This is achieved by a torque meter which is 
arranged between the plates. Shear forces and bending moments are eliminat­
ed by means of flexible elements between the shaft and the torque meter. 

3. ANALYTICAL DESCRIPTION 

In the early design phase a mathematical model of the balance was de­
rived [3]. The major objective was, to see the influence of the load cell 
stiffness to the eigenfrequencies and eigenmodes. A six degree of freedom 
model was chosen for the description of the upper plate dynamics (moving 
part of the balance). The assumptions for the model are 

- all deflections are small 

the damping in the system is neglectable 

- the stiffness of the load cell systems are considerable smaller 
than the rest of the balance 

- the eigenfrequencies of the support doesn't influence the balance 
dynamics. 

Because the rotor support hardware and the control system are very 
complex a lumped mass model was built, Fig. 5. It was used to calculate the 

... e.g. and the moments of inertia. The equations of motion were derived with 
the Langrangian formulas 

d 

dt 
k = 1 ••• 6. 

Therefore a set of generalized coordinates qT= (x, y, z, ¢, e, $) was 
chosen, Fig. 6. The origin coincidences with the e.g. of the balance which 
simplifies the equation of motion. The linear displacement at any location 
i in the system is then given by 

with 
dT 

i = (x, y, z) net linear displacements 

dT 
0 (xo, Yo' zo) vector of linear displacements of c .g. 

rT ( ¢, e, $) vector of Euler Angles 
or 

di [r, Rd q Bi q. 
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with the matrix Ri for the i-th location 

1 -n ~ o 

~ 0 -~ 
I 

l 0 -~ 11 
i 

The derivation of the equations of motion is a straightforward proce­
dure, so here only some remarks are given and then the results will be 
shown. One way to calculate the stiffness matrix is that the potential 
energy of each load cell system will be calculated individually. The deri­
vatives are then given by 

1 'I 
2 i=1 

a<dicidi) 

aqk 
m = number of load cell systems 

C = stiffness matrix of i-th load 
i cell system 

The Ci is here a diagonal matrix with one element * zero because the 
load cell system works only in one orientation with the stiffness ci. 

For the exact determination of the load cell system stiffness, the 
complete arangement as shown in Fig. 3 was tested under tension forces. It 
shows that the flexible. :beam has a not negletable effect on the overall 
stiffness. Figure 7 shows the results of two different load cells. The 
flexible beam lowers the system stiffness. The conclusions from this tests 
are that it is possible to manipulate the stiffness and the sensitivity by 
different combinations of load cell type and flexible beams. 

As all effects were considered the following stiffness matrix was de­
rived where the cik are the stiffness of the i-th load cell system in the 
k-th direction and ~i' ni' ~i the vector components from the e.g. to the 
load cell system connection to the upper plate. 

r 
Icix 0 0 -Ic 11 Icix~i 0 

II ix i 

Iciy 0 Ic iy~i 0 -Ic. ~ 
1y i 

Ic iz 0 -Ic ~- ):ci n. iz 1 z 1 

K 

I<c. 11:+c. ~:) 
J.X l. 1y 1 -Icix~i 11i -Iciy~i~i 

I ~ I<c. ~ 2 +c ~:) -Iciz 11i~i 
I 1x i iz 1 
I 

I I<c ~2+c n2) 
J l 

iy i iz i 
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The derivation of the kinetic energy leads to the mass matrix of a 
rigid body with moments of deviation. 

m 0 0 0 0 0 l 
' ' 

m 0 0 0 0 
I 

0 0 0 m I 
M = 

-I~~ I I~ -I~ll 

~ Ill -Ill~ j 
I~ 

Solving the homogenous differential equation 

Mq+Kq=O 

gives the eigenfrequencies and eigenmodes. 

Figure 8 shows a typical result from calculations with one earlier 
model configuration. As mentioned before the stiffness in the load cell 
system is smaller than of the load cell itself. So these stiffness were 
varied to show the influence to the eigenfrequencies. 

One can see that the four sensor systems which are working in z-direc­
tion have the major influence to the eigenvalues. The conclusions are that 
these stiffness must be determined exactly to get a good estimation of the 
balance response. 

4. EXPERIMENTAL TRANSFER FUNCTION EVALUATION 

The analytical investigations are good for principal considerations 
but not exact enough for determining the exact transfer function. Therefore 
a test setup as shown in Fig. 9 was used to measure the transfer functions 
between the hub and each load cell system. The balance was excited by an 
electro dynamic shaker in each rotor force and moment component individual­
ly. A frequency response analyser was used to measure the force transmitted 
to the hub by the shaker and the force in the dedicated load cell. After a 
lot of averages the analyser computes the transfer function. In Fig. 10 one 
can see a typical plot for the z1 load cell in case of Mx excitation. The 
two curves indicate the eigenfrequencies and the phase lag but the gains 
and the phase at the rotor harmonics are most of interest. One can write 
now the following relation 

s = C • fv v v 

where fv is the complex vector of the excitation, sv the corresponding load 
cell vector and cv the transfer function. All terms are only valid at the 
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dedicated frequency e.g. the rotor harmonic v. For the case of a single 
input - single output system this equation has the form 

(::L = g • [cos $ 
-sin :J . (:c) sin <P cos 

\) s \) 

where 
sc, fc are the cos part of the signals 

ss, fs are the sin part of the signals 

<P is the phase lag between input-output 

g is the gain of the system 

\) is the dedicated frequency 

Now one can use this relation for each force - load cell combinaton 
so that the resulting vectors and the matrix have the dimension [s] =2m, 
[ f] = 2n, [ C] = 2m • 2n. 

During the frequency response test it is not necessary to apply both 
parts of fv because one can set t

0 
for the excitation in the manner that 

one part of fv (fc or fs) becomes zero. After all force - load cell 
combinations where measured over the frequency range of interest (e.g. at 
the desired rotor harmon~cs) the transfer matrices for the dedicated fre­
quency can be calculated 

In the case of dynamic measurement, the fv vectors are constructed by 
means of harmonic analysis of the si time signals and then solving the ma­
trix equation for each frequency v. 

Now it becomes obvious that the static case is only a special condi­
tion with <P = 0. The data reduction program at the RTS use this general 
equation for the cases v = 0, 1, ••• n (rotor harmonics) for the straight­
forward computation of the rotor forces and moments. 

However, this way of solution can contain a lot of errors. One of 
the major sources are the differences in the frequencies v and the actual 
frequency during the wind tunnel runs. If the derivatives &~ are not equal 
zero at w = v the measured Tv matrix is not valid at w * v which leads to 
considerable errors in the fv vector .• For small deviations in w one can 
expand the equation to 

(T + dT(w) \) crw- w=v • dw) • sw 
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but this is not satisfactory for a general formulation of the problem. A 
further error source can be the data path and the analysis if there uniden­
tified or unexpected phase shifts and gains occour. Nevertheless this ana­
lyse technique is only practicable in steady state conditions because one 
must perform a lot of averages to get proper results from the harmonic ana­
lysing. Therefore further analytical and experimental investigations were 
made to come closer to a satisfactory solution of this measurement problem. 
The first step was a simulation study with different data reduction tech­
niques at a 2 DOF model [ 4]. Besides the presented procedure three dif­
ferent Kalmanfilter were formulated for this problem. Special emphasis was 
taken to the cases with errors in the system matrix respectively in the 
T matrix. The simulation results have shown that the Kalmanfilter analysis 
leads to better results than the frequency domain technique, Fig. 11. So 
in the next chapter two systems indentifications procedures are discussed 
which were used to estimate the balance parameters. 

5. SYSTEM IDENTIFICATION IN FREQUENCY DOMAIN 

The general problem of system identification (Fig. 12) is to determine 
certain characteristics of the physical systems from experimental test 
data. Measurements are made of external inputs u and resulting output re­
sponses y which depend on the system characteristics to be determined. A 
mathematical model must be selected that adequately represents the physical 
system to be measured. The parameters in the model can be evaluated from 

.. the test data by means of statistical methods. 

The rotor balance is a system which has 6 degrees of freedom and many 
parameters to be evaluated. The eigenfrequencies of the balance are high, 
so that a high sampling rate should be taken in the data acquisition. The 
eigenmodes of the balance are spread over a wide frequency range. It is not 
possible to use only one input to excite all these modes at one test. A 
good estimate of the system parameters can only be obtained if adequate 
information about the eigenmodes of the system is provided in the measure­
ment data. For technical reasons it is not possible to apply several inputs 
simultaneously within one test. Therefore independent tests (multiple-run) 
are made with different inputs at the same test conditions. By applying a 
multiple-run-technique in system identification the system parameters were 
evaluated by using all information from separate tests. 

The application of the multiple-run-technique for parameter identifi­
cation in time domain not only enlarges the data to be evaluated but also 
increases the number of parameters (initial values of states and bias of 
measurements for each run) to be identified. This leads to high require­
ments not only for computing time but also for storage. 

For the system identification in the frequency domain the data can be 
reduced by choosing the frequency range of interest. The system identifica­
tion in the frequency domain is non-biased if the information of the 
zero-frequency of Fourier variables is not taken into account [5, 6, 7]. 

102-8 



6. METHODS OF ANALYSIS 

The basic approaches of parameter identification in the frequency domain 
presented in this paper are 1) Method of Least Squares and 2) Maximum­
Likelihood Method, both with the application of multiple-run techniques. 

Method of Least Squares (LS) 

The mathematical model used for this approach is 

jwx:(e) = A(e)x(w) + B(e)u(w) 

where j = r:l 

w the independent variable of frequency, 

x(w) state vector 

u(w) control vector 

A( e) stability matrix 

B( e) control matrix and 

e unknown system parameter vector 

The cost function is 

(1) J( e) = II * i) e( w , i) e (w , 
i k k k 

where i number of run 
k dedicated frequency 
e(~, i) equation error and 

* e (w , i) complex conjugate of e. 
k 

Maximum-Likelihood Method (ML) 

The mathematical model used in this approach is composed of equations 
of state and equations of observation. It can be written in the frequency 
domain as following: 

Equations of state: 

j wx:( e) A(e)x(w) + B(e)u(w). 
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Equations of observation: 

y(w) C(8)x(w) + D(8)u(w) 

where y(w) observation vector 

C(8) and D(8) are transformation matrices. 

The cost function of the Maximum-Likelihood estimate is given by 

(2) J( 8) I I * i)S-1 e(w , i) + ln lsi = e (w , 
i k k k 

where e(w , i) measurement error vector 
k 

* e (~, i) transpose complex conjugate of e 

s covariance matrix of e 

The LS estimate of the unknown parameters is obtained by minimizing 
the cost function (1) with respect to 8. This leads to a linear system of 
equations in the parameter 8 which can be solved for 8 exactly. The LS­
estimate is simple and effective but the estimated parameters are not free 
from biases. 

In the ML parameter identification the cost function (2) will be mini­
mized w.r.t. 8. This leads to a system of non-linear equations which can be 
solved iteratively by the principle of Quasi-linearization. In contrast to 
LS-estimates the ML-estimates are unbiased, but a-priori-values of the 
parameter must be given for starting the estimation. 

To combine the both approaches within one estimation procedure one can 
first quickly get the primary values of the parameters by using LS-estima­
tes and then start the ML-technique to improve these results and to obtain 
unbiased estimates. 

7. MATHEMATICAL MODEL FOR PARAMETER IDENTIFICATION 

The balance was excited through the controls u. Under consideration of 
damping due to frictions the equations of motion can be written: 

. 
(3) Mq+Dq+Kq F u 
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where q state vector q (x, y, z, 1jl, e, ~) 

u control vector u (Fx, Fy, Fz, Mx, My) 

M inertia matrix 

D damping matrix 

K stiffness matrix 

F control matrix 

The spring force s which was measured from the force transducer i ac­
cording to Hooke's law can be written as 

or, in matrix form: 

(4) s = c d 

where sT= ( ) sx' sy1' sy2' szl' sz2' sz3' sz4 

dT= (x, y1, y2, z1, z2, z3, z4) 

C is A diagonal matrix. 

It can be differentiated with respect to time, giving 

. 
s = c d 

and 
s = c d 

The local displacement of the load cell i was given in section 3. 

The matrix form is given by 

(5) d = B q 

where 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 
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0 

0 

-~ 
z1 

-~z2 

-~z3 

-~z4 

0 

-~ 
y1 

-~y2 

n 
z1 

nz2 

nz3 

nz4 



The time derivatives of d are 

and 
d 

d 

B q 

B q 

The relation between q and s can be obtained from equation (4) and 
(5) using the matrix operation 

The variable transformation from q to s leads to indefinite transfor­
mation if the dimension of n is not equal to 6. The dimension of n can be 
reduced to 6 by introducing the resultant of the two vectors sz3 and sz4 • 
The vector s is then 

S T= (sx, sy1 , sy2 , s s s ) z1' z2' z34 

The vector d and the matrix B become 

dT= (x, y1, y2, zl, z2, z34) 

1 0 0 -nx l;x 0 l 
I 

0 1 0 i;y1 0 -~;y1 I 
0 1 0 l;y2 0 -~;y2 

I 

B 0 0 1 0 -l;z1 11zl 

0 0 1 0 -1;z2 11z2 

0 0 1 0 -l;z34 11 z34J 

Then the variable transformation from q to s is 

q = B-1 K-1 s. 

By introducing the variables s the equation (3) becomes 

(6) ; + M-1D ~ + M-1 K s = Bp u 

where Bp = M-1 B K F. 

The equation (6) can be written as a first-order system of dimen­
sion 12 by introducing the vector x 

which leads to 

(7) u 
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Equation(?) can be represented in the frequency domain by using Fourier 
transformation. -Non periodic signals in the state variables were considered 
as described in [5, 6]. 

The equations of observation used here are 

y I X 

where I is an identity matrix. 

For the parameter identification the diagonal elements of matrix M-1D 
and all elements of matrixes M-lK and BF are evaluated. 

8. IDENTIFICATION RESULTS AND DISCUSSION 

The sampling rate of the measuements was 0.0025 sec. The Nyquist fre­
quency is 400 Hz. The upper boundary of the frequency range of interest is 
about 140 Hz which corresponds to 8/rev of the rotor. It is evident that 
high noise level could occur in the measurements at high frequencies. 
Therefore a band limit at 200 Hz was taken by using a 6-order low pass 
filter during the data acquisation. 

For the evaluation a frequency range from 10 to 125 Hz was considered. 
The eigenvalues of the balance have been calculated from the simulated 
model whose parameters were estimated by using system identification tech­
niques. For comparison, the eigenfrequencies which were calculated from the 
analytical method with those calculated from the simulated model are shown 
in Fig. 13. One can see that only four of the six eigenfrequencies are in 
the same range. Two modes of the analytical model have considerable higher 
eigenfrequencies than the true system. One explanation for these discrepan­
cies is that these modes are not considered in the analytical 6-DOF model, 
but a valid answer to this problem can only be given by an experimental 
mode analysis. 

Plots of transfer functions of the simulated model and measurements 
are shown in Fig. 14. Figures 14(a) and (b) illustrate the transfer func-

tions ~x/Fx and ~x/My respectively. A good agreement is obtained in the 
medium frequency range. Differences at high frequencies are due to the high 
noise level from the x-force transducer measurement for w > 80 Hz. Figure 

14(c) shows the curve fit of the transfer function ~y 1 /Fy• It is not very 

good in quantity. The energy level of ~y- measurements are relatively 
lower than other force measurements, so that the parameters in the sy~equa­
tion cannot be estimated exactly. Figure 14(d) shows the transfer function 

~z 1 /Fz. The curves of transfer functions of z-force transducers provide a 
good fitness for other input cases, too. One dominant system response is 
caused by the Fz force whereas the other inputs excite different eigen­
modes. 
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9. CONCLUSIONS 

The application of three different methods for estimating the dynamics 
of the rotor balance leads to the following results. 

o The dedicated balance cannot be described with a 6-DOF rigid body model. 

o The transfer function measurement technique gives good estimates in the 
calibration case but in the measurement case a lot of unidentifyable 
errors leads to inexact results. 

o System identification can give a satisfactory estimation of the input­
output relations at the balance. Especially in combination with a data 
reduction using Kalman filter techniques, this method seems to be a prac­
ticable way to get valid dynamic force measurements. 
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Figure 1. Six Component Rotor Balance 
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Figure 14. Fit of Transfer Functions 
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