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Abstract

The need for increased fidelity and performance in he-

licopter flight simulation requires new concepts in model

generation and simulation.

One approach consists of combining generic nonlin-

ear modeling with reduced order parameterized terms. It

is intended to systematically integrate this new technique

into existing model structures as a complementary way of

generating and processing flight dynamics models which

combine physical accuracy and wide ranges of validity

with reduced numerical workload and computation time.

As an exemplary application, theparametric wake dis-

tortion model is being investigated and optimized using

Bo105 flight test data.

The paper describes the approach of the DLR Institute

of Flight Research which utilizes a parameter optimiza-

tion routine that has been integrated into the common sim-

ulation environment HOST by the ONERA Department of

Systems Control and Flight Dynamics.

Symbols

c0, cl, cm thrust, roll, pitch moment coefficient, [-]

p, q, r roll, pitch, yaw rate, [rad/sec]

p parameter vector

p̂ estimated parameter vector

t time, [sec]

tn observation time, [sec]

x, u, y state, input, output variables

y
mes

measurements
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J cost function, [-]

Kp, Kq wake distortion parameter roll, pitch, [-]

KR wake distortion parameter hover, [-]

L̂ gain matrix, [sec/m]

M apparent mass matrix, [-]

R covariance error of measurements

β blade flapping angle, [rad]

δx, δy longitudinal, lateral cyclic stick input, [%]

λ inflow ratio, [-]

θ1s, θ1c longitudinal, lateral cyclic blade pitch, [rad]

Ω main rotor RPM, [rad/sec]

∇J,∇2J first and second gradient matrices

...0,c,s mean, cosine and sine component

ACT/FHS Active Control Technology /

Flying Helicopter Simulator

FADEC Full Authority Digital Engine Control

HOST Helicopter Overall Simulation Tool

PID Parameter Identification

RPM Revolutions Per Minute

SEE Syst̀eme d’Exploitation d’Essais

(Test Evaluation System Interface)

1 Introduction

In most of the current rotorcraft flight research projects

are two major points where accurate flight simulation is

crucial.

On one hand, the support of flight testing represents

one large area of flight simulation application. On the

other hand, pilot training sets the mark for helicopter sim-

ulator accuracy standardization.

Flight test support is even more relevant when new

concepts, such as control systems or control laws, are be-
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ing investigated. Here, simulator trials before actual flight

are vital both for security and economic reasons. This

field comprises also preparatory work for in-flight simula-

tion that will be conducted by the DLR Institute of Flight

Research on its EC135 ACT/FHS testbed. For this case,

high bandwidth system models are mandantory for the de-

sign of the Model Following Control System [1, 2].

Helicopter training simulators are standardized e.g. by

the Advisory Circular AC 120-63 on Helicopter Simula-

tor Qualification from 1994, published by the US Fed-

eral Aviation Authority (FAA), and the European coun-

terpart, the Joint Aviation Requirement JAR-STD 1H, on

Helicopter Flight Simulators released in 1999 by the Joint

Aviation Authorities (JAA).

These requirements for higher accuracies lead to an

extended use of nonlinear generically derived models in

helicopter flight simulation. However, the complexity of

modeling is limited by the demand for real-time capabil-

ities of piloted simulations. Therefore, a solution has to

be found, where high fidelity is combined with a feasible

requirement of computation time.

Recent research led to the combination of nonlinear

modeling with parametric modeling approaches. These

newly defined parameterized models can be subject to a

parameter optimization procedure to adapt the model re-

sponse to flight test data.

The HOST (Helicopter Overall Simulation Tool) sys-

tem has been chosen as the simulation environment for

this research. HOST is the comprehensive simulation code

developed by Eurocopter which is now the common flight

dynamics research tool in use by Eurocopter, Eurocopter

Deutschland GmbH, DLR and ONERA.

A highly efficient parameter identification routine has

been integrated (see Section 4) and was used for the de-

scribed work. To obtain a well-conditioned problem with

correct sensitivity about all parameters, it is generally nec-

essary to fit measurements and simulation results on sev-

eral concatenated runs. This aims towards an estimation

of parameters that are valid for several flight conditions as

well as to estimate parameters of ’Multiple Input-Multiple

Output’ (MIMO) problems, such as cross coupling.

To have a non-trivial application case, a parametric

wake distortion (PWD) model [3, 4, 5, 6] has been cho-

sen to get experience for the necessary functionality and

the optimal way of implementation.

After this introduction to background and intentions of

the described research, the modeling approach and some

thoughts on the optimization of these models are presented.
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Figure 1: Three columns model [7].

The applied models are discussed with special emphasis

on model architecture. The parameter identification rou-

tine and its connection to the simulation tool is then de-

scribed as a central point of the performed work since the

decisions made in the development process of these tools

have direct influence on the system performance and thus

on the quality of the identified models. Selected results

demonstrate the potential of adapting specialized models

and a high performance identification routine in optimiz-

ing the HOST simulation fidelity.

2 Approach and Optimization

One approach by the DLR Institute of Flight Research

to integrate parameterized models into a nonlinear envi-

ronment is illustrated in Figure 1 [7].

It refers to a combination of the advantages of two

fundamentally different approaches in the development of

flight dynamics models. First, linear derivative modeling

that is to be identified from flight test data, represented

by the left column. This technique generates models that

are accurate but subject to small perturbation assumptions

and a restricted representation of the physics (see [8] for

examples). The second approach uses detailed vehicle in-

formation to develop generic nonlinear helicopter models,

represented by the right column. Recent research led to

significant improvements of these models so that the stan-

dards can be mostly fulfilled [5]. The disadvantage of this

technique is that the model complexity is limited by the

required computational speed.

To combine the advantages of these approaches more

sophisticated nonlinear modeling approaches are being ex-

tended with models that are subject to model reduction

procedures. These models are of lower order than the orig-

inal fully nonlinear models and have certain physical sys-
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tem properties represented in parametric terms. Further-

more, phenomena on which not enough physical knowl-

edge is available can be represented by parameterized mod-

els. The models are set up from phenomenological obser-

vations to comprise additional degrees of freedom and are

suitable for pilot-in-the-loop real time applications. This

third approach is represented by the middle column in Fig-

ure 1. As an example for rotor modeling, this technique al-

lows the description of local rotor dynamics with a global

parametric approach which is fed back to the rotor’s blade

element equations.

The approach suggests the use of optimization tech-

niques to tune the parameters inside the models and thus

to improve the simulation result. This is realized as a con-

nection between identification and simulation tools.

It is evident that wherever parametric modeling is ap-

plied, a step back from physical authenticity is being made.

The disadvantages are clear. The optimization of models

by means of parameter identification tends to correct any

kind of errors. This also comprises errors of deficiencies

that are not within the scope of the specific problem that

is being analyzed.

The reasons, why it is still beneficial to use such com-

bined techniques are almost as clear, though. It promises

to improve simulation fidelity to a level that would require

far more complex models — and thus increased computa-

tional time — if modeled with generic nonlinear methods.

The threat of affecting other than the model incapacities

aimed for can be reduced by using models that are em-

bedded deeply in the model structure in a way that they

only influence the local dynamics.

3 Nonlinear Modeling

One of the methods to derive parameterized models

from complex nonlinear systems is to perform a model

reduction procedure. With the use of e.g. transfer func-

tions or differential equation systems, the number of state

variables is being reduced and the physical information is

represented by the remaining state variables or the gener-

ated model parameters, respectively. In some cases, this

method generates linear systems which then can be ex-

tended e.g. by time delays if the linear representation is

not satisfying the demands.

A more complex approach would not be convenient

since a model setup from this basis would quickly lead to

highly complex models and the advantage in processing

time would decrease.

As indicated above, the chosen solution could be the

combination of a generically derived model with an ap-

proximated parametric extension. In the effort towards a

systematical usage of parameter identification techniques

inside a nonlinear environment, a model of this kind is

used to develop initial experiences in this domain of re-

search which is described in the following.

3.1 Parametric Wake Distortion

With a first test case it was possible to validate the pa-

rameter estimation tool in its function. This test case was

the optimization of a ’Single Input-Single Output’ (SISO)

model with well known parameter sensitivity. The sys-

tem proved to run correctly and to optimize the assigned

parameters within reasonable time. Until that stage, the

tool has not been tested for the optimization of multiple

parameters but the basic capabilities have been embedded

in the programming of the procedure.

After this basic verification a more sophisticated model

was to be processed to analyze the system’s capability

to cope with more deeply embedded parameterized mod-

els. Due to its significance the parametric wake distortion

model based on the work on helicopter wake modeling by

Rosen [3], Keller and Curtiss [4] and Basset [6] has been

chosen. Primarily, the wake distortion theory points to-

wards an explanation of the still existing deficiencies in

predicting the cross coupling of a helicopter. It combines

a state-of-the-art rotor wake model with parametric archi-

tecture and therefore it is a very adequate object of inves-

tigation.

M
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



(1)

As can be seen from Equation 1 the model refers to

the Pitt and Peters dynamic wake approach [9] which is

widely used for rotor inflow computation. As introduced

in [5], the term on the right hand side represents the feed-

back of the tip path plane dynamics onto the induced ve-

locities of the main rotor, magnified by the two parameters

Kp andKq. For validation purposes, this model gives also

the possibility to test the optimization code with more than

one parameter to identify. The formulation of the prob-

lem, comparable to a feedback control structure, leads to

a non-trivial problem incorporating correlation aspects.
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Figure 2: Wake propagation of a pitching helicopter.

As denoted in [6], the original Pitt and Peters formula-

tion showed remarkable improvements in the prediction of

cross coupling in forward flight but was insufficient near

hover.

The basic theory is that in a state near hover, when the

helicopter is performing a steady rotational movement, the

effect of the blade vortices being compressed under one

side of the rotor (see Figure 2) would lead to an induction

to the global wake field. This results in the distortion of

the rotor wake which counter-reacts with the helicopter

movement.

According to theory, the rotational movement affects

the distribution of tip vortices emitted by the rotor. This,

having a direct effect on the induced velocity field has also

an impact on the resulting air loads. The gyroscopic be-

havior of the rotor is then the reason for the off-axis re-

sponse of the aircraft.

As horizontal speed increases, the vortices are dragged

out of the zone of influence of the main rotor and the effect

diminishes. Therefore, the wake distortion parameters can

be assumed to approximate zero with increasing horizon-

tal speed.

It was shown that in hover, the wake distortion param-

eters coincide at a value denotedKR by Keller [10]. Sev-

eral approaches with different strategies have been under-

taken to derive its numerical value. Table 1 shows that the

value forKR falls in a region between approximately 0.5

and 2 but is equally scattered within this band. This varia-

tion is due to the different models that have been used and

other circumstances of the analysis.

Among other dependencies described in [6] the effect

of forward speed on the wake distortion parameters has

Reference Model KR

Rosen, Isser [3] Prescribed wake 0.75
Keller [10] Spiral vortex tube 1.5
Basset [11] Spiral vortex ring 1.5
Barocela, Peters et al. [12] Momentum 0.5

Prescribed Wake 1.0
Bagai, Leishman et al. [13] Free Wake 1.75

Table 1: Wake distortion coefficients in hover.

been paid special attention to during this analysis in terms

of optimized response.

3.2 Component Models

The example described above is a very convenient case

for the kind of study aimed for i.e. the optimization of

generically set up parametric models. The model includes

parameters that have been derived from physical observa-

tions and not from e.g. a polynomial function with the

predefined purpose to be optimized to fit measured data.

To give an example of further possible applications of

this method, two problems might be indicated that rep-

resent different approaches of parametric modeling. The

improvement of the Fenestron dynamics model and the

identification of an engine model.

The approach of optimizing models in a comprehen-

sive generic environment comprises the improvement of

models that suffer from substantial deficiencies. These

models can be extended by parametric terms that, after

undergoing the optimization procedure, represent the er-

ror of thebare model. The formulation of the Fenestron

dynamics which is also a requirement for the ACT/FHS

(EC135) system simulation may be named as an example

for this case. Here again, it is crucial to figure out carefully

what kind of errors the identification procedure is dealing

with.

Models that already exist in parametric form are a nat-

ural point of interest of the described techniques. Engine

modeling can be named as an example of modeling where

the model is being reduced to its significant dynamic prop-

erties by means of parameterization [14]. It is intended to

verify the new system’s capability for this case, too.

4 Integration of Parameter Estimation into

the HOST Tool

The HOST software structure is designed to support

the integration of various models, despite of their levels of

complexity. The description of the local sub models and
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their links is made into data files and processed by build-

ing subroutines. The use of HOST proceeds in an inter-

active way. At each step, a dialog is established with the

user by interfaces such as interactive menus, data acquisi-

tions or modifications and graphic displays on the screen.

It has been decided to introduce a parameter identification

functionality to HOST in order to provide an interactive

tool able to improve the non linear simulations.

4.1 HOST Description

For precise description see the collection of HOST

documents [15] as well as [16] for descriptions on the ap-

plication of the system. We just intend to describe its main

functionalities and their interest for parametric identifica-

tion (PID).

The standard HOST version produces:

• Equilibrium definition and trim calculation.

• Equilibrium scanning versus parameter sweeps.

Routines able to add a model parameter into a list

and to modify its value can also provide an easy

possibility to obtain parameter dependent simula-

tions for identification procedures.

• Simulations of helicopter behavior driven by con-

trol inputs from a flight test data set (SEEformat)

to compare measured response with simulated re-

sponse.

The selection of SEE-files, simulation time ranges,

control inputs and outputs is obtained from inter-

active inputs to menus. The simulation results can

be compared with flight data for selected inputs and

both data sets can be plotted simultaneously.

• Inverse simulation to provide desired variations on

observation outputs by calculating helicopter input.

Among the code used for inverse simulation are sev-

eral tools that are of use for PID development, such

as the selection routine for the chosen outputs. The

selected outputs for inverse simulation will be used

to compute the fitting criterion.

• Graphic display of results.

These HOST functions will be used with few modifi-

cations to build the parameter estimation extension of the

present code organized in a structure of hierarchical direc-

tories.

4.2 Parameter Identification

The choice of a tuning technique may have some con-

sequences for the connection of HOST with the parame-

ter identification codes. It is very important to choose an

algorithm needing as few iterations as possible, even for

a large number of parameters, using the particular struc-

ture of the fitting criterion. For that reason, the output

error minimization technique [17] with the second order

Newton-Raphson procedure has been chosen.

Let us describe the model by the following equations:







ẋ = f(x, u, p)

y(tn) = g
(

x(tn), u(tn), p
)

= y(n)
(2)

The cost function to be minimized by the estimator is:

J =
1
2

N−1
∑

n=0

[

y(n)− y
mes

(n)
]T

R−1[y(n)− y
mes

(n)
]

(3)

The estimated parameters are obtained iteratively from

the gradient of the criterion∇J and an approximation of

the second gradient∇2J . At the end of iterationk, the

estimated vector parameter isp̂(k). The estimated param-

eter vector at iterationk + 1 is then obtained by:

p̂(k + 1) = p̂(k)− [∇2J ]−1∇J (4)

The gradients are issued from the sensitivity functions
[∂y(n)

∂p(i)

]

which can be computed from the nominal simula-

tion and the perturbed simulations:







ẋ = f(x, u, p(i))

y(n) = g
(

x(tn), u(tn), p(i)
)







ẋi = f(xi, u, p(i) + ∆p(i))

y
i
(n) = g

(

xi(tn), u(tn), p(i) + ∆p(i)
)

by

[

∂y(n)
∂p(i)

]

=
y

i
(n)− y(n)

∆p(i) (5)

As shown in [18], at timetn all the outputs of the per-

turbed simulations are needed. In HOST this will imply

the management of so called parallel simulations in or-

der to get all the needed information at timetn without

any unnecessary storage. This constraint is related to the

choice of the Newton-Raphson procedure. It would not
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be the case using the conjugate gradients technique to be

tested in the near future.

4.3 Integration of HOST and Parameter Identifica-

tion

4.3.1 Software Requirements

An integration scheme is necessary all along the time

range selected for optimization and simulation, but also

for several runs generally necessary to provide enough

information to tune the selected parameters. This is not

available in the standard HOST code and has to be in-

troduced. The connection must satisfy some constraints

considering the organization of menus and parameter se-

lection to maintain a low workload for users.

1. The identification procedure is activated from a but-

ton in theSecondary Menu, it opens several con-

nected sub-menus to select parameters, inputs, out-

puts, SEE-files, number of iterations, ...

2. The trim conditions defined at the beginning of the

HOST session for any standard processing can also

be modified in the identification menu and it is not

necessary to go back to process successive parame-

ter estimations with various computing conditions.

3. The selection procedure is copied from the HOST

one but all the individual selections are available

separately from individual buttons in the identifi-

cation menu and they are processed by specialized

subroutines.

New FORTRAN subroutines are stored in a new PID

source code directory. Some FORTRAN subroutines of

the standard version have to be modified. Interference

with the actions of a standard HOST user must be avoided,

following some simple rules.

• A common file is never modified or extended, new

commons have just to be introduced in the proper

include directory.

• A small number of routines are modified with a logic

flag avoiding modification when the parameter iden-

tification option is not running.

• The general organization of the code and the con-

ventional names are respected.

• All new routines are introduced in the new source

directory. The names of these routines are chosen

in a way that it is possible to directly allocate them

to the PID functionality.

Most of the new created routines are copied from stan-

dard HOST ones, but often split into individual selection

procedures: inputs, outputs, etc. So it will be possible

to process successive identifications with few interactions

with theParameter Identification Menu(see Figure 3).

4.3.2 Organization of the Integration Calculus

The choice of the interactive HOST code and the out-

put error minimization technique for parameter identifica-

tion has some consequences on the connection.

1. The separated roles devoted to HOST and PID are

defined as below.

HOST defines - the structure of the model.

manages - the list of tunable

parameters.

- the files containing the

flight test data.

provides - the simulation.

PID computes - the fitting criteria.

- the proposed variation of

parameters at each step.

So the PID program is more or less reduced to its

optimization part.

2. The Newton-Raphson procedure used in the estima-

tion procedure implies parallel simulations of nom-

inal and perturbed models as explained above. The

classical simulation in HOST supposed to deliver

the output model for the criterion and gradients cal-

culations has to be modified according the follow-

ing scheme:

• Timet: States for nominal and perturbed mod-

els are available.

• Load the state in HOST working state.

• Calculate the nominal state at timet + dt.

• Save the result.

• Load the state of the perturbed model number

i in the HOST working state.

• Calculate the state of perturbed model number

i at timet + dt.

20.6



• Save the result and go to timet + dt.

• Time t + dt: States for nominal and perturbed

models are available.

4.3.3 Improvements of the HOST/PID Tool

Some improvements have been introduced to extend

the robustness and the performance of the tool:

• Improvement of the second gradient matrix condi-

tioning.

A pseudo-inversion of the∇2J matrix avoiding the

inversion of low eigenvalues is performed.

• Parameter estimation boundaries.

A control of the parameter range is obtained by pro-

jecting the direction of research on the maximum

or minimum constraints if an estimation exceeds a

physical boundary.

• Static characteristic fitting.

The PID algorithm can tune parameters in order to

improve the fitting between trim situations calcu-

lated and measured. The integration is just replaced

by successive equilibrium calculations. In that case

all the static data are concatenated in a unique file

allocated to a unique set of optimized parameters.

• Estimation of varying parameters.

Only parameters constant versus time or measured

information can be directly processed. But a vary-

ing physical parameter can be modelized as a poly-

nomial or a spline function. The polynomial or the

spline parameters are then able to be optimized by

the proposed HOST/PID tool.

4.4 Example of a PID Session

Before the optimization processing the model has to

be implemented into the simulation/identification environ-

ment. Besides simply embedding the new (parameterized)

models into the HOST code, the link of the parameters to

the identification module has to be established. Multiple

links have to be set in order to take advantage of all the

possibilities that HOST offers.

Let us describe the succession of menus, windows and

decisions necessary to process in an identification session.

The first three menus can be opened with a simple click to

go to the following one with the sequence:

Figure 3: Parameter Identification Menu.

Initial Menu— Calculation Menu— Secondary Menu

In theSecondary Menu, select the parameter identifi-

cation processing to go into theParameter Identification

Menu which is now the main menu for the whole iden-

tification processing until a click on theReturn to Sec-

ondary Menubutton that terminates the identification ses-

sion. TheParameter Identification Menuis depicted in

Figure 3.

The buttons listed in Table 2 are available in the present

version with the attached functions and selections.

The user is guided by a sequential appearance of each

menu. At the beginning of the session, only the buttons1,

3, 10and12are activated and visible. This is sufficient to

define the trim conditions and the general parameters pi-

loting the identification. Nothing more is available before

using button10 to select the SEE-files.

The Parameter Identification Menuis recommended

to be used as follows

1. Button10 gives access to a sub menu for the stan-

dard selection of the SEE-files. It can provide:

• a sequential interactive tool to select the dy-

namic files, the working time ranges and the

global weightings of the runs.

• a selection of a static file and of its measured

variables applied to compute the trim compo-

nents.

At the end of this selection it is possible to go back

to theParameter Identification Menu.

2. If dynamic files have been selected, buttons2 and4

are available to select the inputs of the model read
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Button 1 Trim calculation Trim definition and calculation.
Button 2 Modify inputs selection Input of the model read in SEE data files.
Button 3 Identification options Number of iterations, stop criterion,...
Button 4 Modify outputs selection Output of the model compared to SEE data files.
Button 5 Identification execution Estimation algorithm and simulation.
Button 6 Selection of variables

for static optimization
Button 7 Modify output weightings Standard deviations on output measurements.
Button 8 Identification execution Estimation algorithm and simulation.
Button 9 Modify static variables Standard deviations on output measurements.

weightings
Button 10 See files selection
Button 11 Modify parameters Current, minimum and maximum values of parameters.
Button 12 Return to secondary menu

Table 2: Identification Buttons and Options.

from the files and the outputs used to build the fit-

ting criterion. If a static file has been selected, but-

ton 6 is available to select the variable of the static

file to be fitted.

3. Output selection from button4 activates button7

which leads to a list of the possible outputs with

the standard deviations used to build the fitting cri-

terion. The selected outputs are pointed out by an

asterisk and the values can be modified by the user.

4. Static variable selection from button6 activates but-

ton 9 which leads to a list of the possible variables

with the standard deviations used to build the fitting

criterion.

5. Button8 is then available to propose a list of the

tunable parameters.

6. Button11proposes the list of all tunable parameters

with the present, minimum and maximum values.

The selected parameters to be tuned are pointed out

by an asterisk and again the values can be modified

by the user.

7. The use of button5, now activated, starts the iden-

tification with warning messages in case of wrong

decisions such as missing inputs or outputs. The

zero parameter situationis accepted, it produces a

zero iteration run, i.e. a pure simulation.

The complete menu is now available for further pro-

cessing and for new sessions just after the SEE-file selec-

tion. It is possible to process successive identifications.

It may be noticed that the selection operations are decou-

pled. Then the following parameter estimations can be

processed with as few user interactions as possible. It is

only necessary to describe what has been changed with re-

spect to the previous selections. At the end of each iden-

tification procedure, the results management of HOST,

modified to accept multi-run data, is available to display

time histories of flight data and simulations or measured

and calculated trim components.

5 Results

The present status of the connection between HOST

and the parameter identification codes already provides a

tool able to tune some unknown parameters in the models.

The user is guided all along the identification session and

the decisions, the actions and the provided information are

conform to the HOST standard. The identification menu is

clearly separated from the other processing and it is easy

to:

• Process several identification computations without

return to thestandardmenus.

• Alternate standard computations and identifications.

After the implementation of the PWD model, the sim-

ulation results already showed a significant improvement

with respect to thebarePitt & Peters model (see Figure 4).

These computations were conducted with the wake distor-

tion parametersKp andKq set to1.5 equally, according

to [10] and [11].

However, as mentioned in Section 3 there are several

influences that affect the optimal value ofKp andKq de-

pending on the flight case. Figure 5 shows the results of

a different flight case that underlines the improvements

obtained by the optimization of the parameters. For this

result, the multi-run option has been used to identify the

parameters due to cyclic longitudinal and lateral control
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inputs. For flight case #1 (on the left hand side of the ver-

tical lines) the flight test data and simulation allocated to

the longitudinal control input flight test are depicted. For

flight case #2 (on the right hand side of the lines) the cor-

responding curves for the lateral input flight test data are

shown.

Both, Figure 4 and Figure 5 show the simulation re-

sults of a Bo105 helicopter in hover compared to flight

test data. As control input, for Figure 4 a cyclic lateral

3 - 2 - 1 - 1 signal and for Figure 5 cyclic longitudinal and

lateral doublet signals have been chosen.

For this computation, the wake distortion parameters

have been identified with the following values:

Kp = 2.3, Kq = 1.7.

As one can see, these values are not coincident and do

not match exactly the theoretical values listed in Table 1.

This may be explained mainly by three reasons:

• Model deficiencies due to simplifications,

• Non-comprised physical effects,

• Non-ideally trimmed flight test data.

General model deficiencies resulting from simplifications

that are unavoidable in any modeling task affect the opti-

mization by the attempt of improving the effects of these

deficiencies in addition to the actually considered ones.

Increased computational performance could reduce these

influences but modeling will always comprise simplifica-

tions and approximations. Similar to this case the same

behavior results from unknown physical effects that are

not represented in the model formulation. Here, further

research is necessary to discover these effects and to find

ways to integrate them into the mathematical modeling.

A very practical influence that may affect the simulation

and optimization results comes from the quality of flight

test data. If not ideally trimmed (i.e. with imposed rota-

tional rates) or disturbed by external or internal inputs that

cannot be represented by the simulation, the optimization

tends to deal with these effects, too. Only carefully flown

flight tests with little, or at least well known external dis-

turbances minimize this kind of negative influence on the

optimization result.

Despite a certain influence from these directions the

enhancement in simulation fidelity that can be observed

improves remarkably the off-axis response prediction —

which is, basically, the main goal of the conducted re-

search.

The comparison between Figure 5 and Figure 6 shows

the importance of carefully analyzing the model in order

to evaluate the results correctly. Both figures show the

results of the optimized simulation of the same flight test

with identical starting values. The simulation shown in

Figure 5 is conducted by pilot control inputs while Figure

6 shows the result of the analysis with swashplate angles

as control input.

The difference between these two figures results from

the deficiencies of the control chain model between the

pilot’s cyclic and collective sticks and the swashplate that

actually represents the blade root angles and thus the phys-

ical system input. Several more or less well known effects

are not comprised and the most visible one is represented

by the small initial bump in negative direction in the sim-

ulated roll response on longitudinal input (around second

22 and 23) in Figure 5 (pilot commands). The simula-

tion depicted in Figure 6 (swashplate commands) does not

show this effect which is believed to be allocated to struc-

tural flexion of the control booster/swashplate unit.

Consequently to this difference, the identified values

for the wake distortion parameters differ from the ones

derived for pilot commands:

Kp = 2.5, Kq = 1.3.

This is a good example to show the impact on the

identification of the parameters when the optimization at-

tempts to correct errors that are not allocated to the actual

domain of interest, i.e. the wake distortion phenomenon

in this case.

Figure 7 shows the effect of optimizing the wake dis-

tortion parameters for a horizontal flight of the Bo105 at

80 [kts] with pulse and doublet pilot inputs, the optimized

values being:

Kp = 1.1, Kq = 1.6.

This case also shows a discrepancy to the theory stated

in Section 3 which defines the parametric wake distor-

tion as a phenomenon occurring exclusively in/near hover.

However, the improving effects are considered to qualify

this procedure at least for model tuning purposes.

The results underline the sensitivity of this kind of

parametric modeling in nonlinear environment to model

uncertainties and ignored physical effects. The attempt to

identify the wake distortion parameters contribute to the

efforts to numerically assess the complexity of the heli-

copter rotor wake and its effect on the aircraft’s flight dy-
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namics. In any case, the optimization functionality im-

proved strongly the simulation accuracy. Next steps in

this field will be the evaluation of a permanent embedding

of the derived model parameters into the simulation code

and to make it accessible to the HOST community.

The next steps in implementing these results are an

evaluation of the parameters, e.g. dependent on horizontal

speed, allocated to the specific helicopter type and flight

state to be permanently implemented into the simulation

codes. This could be by a polynomial function similar to

the one presently in use but with optimized values.

6 Conclusions and Outlook

The identification tool extends the capabilities of the

HOST system significantly. A variety of problems can be

treated that require a parametric modeling in order to op-

timize the predicted behavior of the aircraft. A further de-

velopment is planned including following improvements

which are considered to enhance the performance of the

tool further:

• Mixed static and dynamic optimizations have to be

performed.

• Varying parameters have to be taken into account.

• Further testing at DLR, ONERA and Eurocopter

will contribute to the code consolidation.

• The user friendliness of this interactive tool will be

further improved by the work shared between DLR

and ONERA.

For the test case described above, the optimization of

the parametric wake distortion (PWD) model generated

results that improved the insight in various aspects of the

performed analysis. The characteristics of the modeling

approach become more clear.

The optimization of the PWD model led to strong im-

provements in helicopter response prediction which al-

lows to optimistically step forward towards new applica-

tions and, finally, the systematic integration as a common

method of modeling.

Presently, various applications are planned such as the

identification of a modified Fenestron model and a para-

metric engine model in a real-time simulation environ-

ment.

Lately, various efforts have been made to improve the

dynamic response prediction of helicopter models that are

equipped with the Fenestron anti-torque system [19]. Dif-

ferent approaches lead to an improvement but deficien-

cies are still remaining. It is intended to set up an ex-

tended model that consists of the standard formulation

plus a parametricerror model, i.e. a term that is supposed

to represent the deficiencies in the dynamic response. Af-

ter the optimization of the parameters a significant im-

provement is expected that can constantly be integrated

into the model code.

Since no detailed information on the engine that will

be installed on the EC135 ACT/FHS demonstrator is avail-

able until the aircraft becomes operational, the dynamic

engine model developed for the Bo105 real-time simula-

tion [14] was integrated into the new EC135 formulation

by adapting the RPM governor parameters to represent the

FADEC response characteristics. Despite the successful

adaption of the model to the new helicopter type there are

still model deficiencies in the prediction of the dynamic

behavior of the engine (e.g. the reaction in rotor RPM

to pedal or collective input). Compared to the paramet-

ric wake distortion model where one of the difficulties is

to optimize a local (wake) problem by the use of global

system input (cyclic stick/swashplate) an output (roll and

pitch rate), the FADEC system allows to work specifically

with the variables allocated directly to the phenomenon

that is being analyzed. It is now aimed to convert the

model into a form that is accessible for the parameter op-

timization. With the flight test data that will be available

from the ACT/FHS FADEC system it will be possible to

improve the model in a way that it covers the needs for

dynamic behavior prediction satisfactorily.

There are many challenging projects where this inte-

grated combination of a simulation tool and a paramet-

ric identification procedure can be of good use to gener-

ate simulations that provide improved fidelity along with

a large spectrum of application — a consequence of the

strategy of using nonlinear modeling extended by para-

metric approaches to guard a maximum of physical accu-

racy along with improved simulation fidelity. For future

application it is planned to use the described codes as per-

manent optimization tool and to increasingly use this basis

of model improvement.
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Figure 6: Comparison of the simulations with optimized and non-optimized PWD in hover — Swashplate commands.
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