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ABSTRACT 

 
A rigorous analytical model for lifting rotor performance in forward flight is developed that combines finite 
state Dynamic Inflow theory with conventional blade element theory. Dynamic Inflow is based on first-
principles potential flow theory that relates the rotor induced inflow velocity distribution to the rotor pressure 
loading. The model is able to capture increased induced power at higher advance ratios not predicted by 
Glauert’s classical momentum theory. The model provides general performance characteristics for 
specified blade pitch and radial twist control as well as optimum performance subject to specified 
constraints. The rotor is treated as an infinite-blade actuator disk including the effects of reverse flow and 
inflow feedback. Results confirm the singularity in rotor power found in earlier investigations and provides 
new understanding of the important effects of reverse flow, inflow feedback, rotor solidity, and blade root 
cutout. The model also directly yields power constants for a quadratic power model that may be used to 
quickly calculate induced power as a function of advance ratio. Results obtained using higher harmonic 
blade pitch control show that induced power is reduced for all conditions. With a sufficient number of control 
degrees of freedom, induced power approaches Glauert’s minimum ideal power. Higher harmonic control 
also eliminates the infinite power singularity. 
 
 
NOTATION 
 
a   slope of lift curve, rad-1 

A   rotor disk area 
[�̅�]   effect of control input 

[�̅�]   effect of inflow feedback 
{𝐶}   rotor loading constraints 
{𝐶̅}   normalized loading constraints, {𝐶}/CT  

c   blade chord 
CL   roll moment coefficient 

CM   pitch moment coefficient 

CP   induced power coefficient 
CT   thrust coefficient 

𝐷 maximum order of blade radial twist 
control polynomial 

[�̅�] matrix relating pressure states to rotor 
loads  

𝐹()   functional 

𝐻   maximum harmonic of blade pitch control 
[𝐼]   identity matrix 

Lq   blade airload, lift per unit length 

[�̅�𝑒] matrix relating pressure state to inflow 
state 

[�̅�𝑒]𝑠𝑦𝑚 symmetric part of [�̅�𝑒] 

𝑀 maximum harmonic number of Dynamic 
Inflow states 

𝑁 number of polynomials used in the 
expansion of radial inflow function 

𝛥P   non-dimensional pressure difference 

P𝑛
𝑚(𝜈)   normalized Legendre function 

[�̅�] matrix relating pressure states to control 
variables 

R   blade radius 

𝑟𝑐𝑜    root cutout, fraction of blade radius 

�̅�   non-dimensional radial position 
t   time 
[𝑈]   flipping matrix 

𝑈𝑇 blade section tangential velocity 
component  

𝑈𝑃 blade section perpendicular velocity 
component  

𝑉   √𝜇2 + 𝜆2 

𝑉∞   non-dimensional free-stream velocity 
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w(�̅�, 𝜓) non-dimensional induced flow 

𝛼𝑠   nose up shaft angle 
{𝛾}   inflow state 

𝜃(�̅�, 𝜓) blade pitch angle 

{�̅�}   rotor control 
𝜆   inflow due to shaft tilt = −𝜇𝛼 
{𝛬̅}   Lagrange multiplier 
𝜇   advance ratio =  𝑉𝑠𝑖𝑛(𝜒) 

    ellipsoidal coordinate 

𝜌   air density 
𝜎   solidity, 𝑏𝑐/𝜋𝑅 
{𝜏̅}   pressure states 

𝜙𝑛
𝑚(�̅�)   inflow expansion function  

𝜒   wake skew angle 

𝜓   azimuth angle 

𝛺   rotor speed 
 
 
INTRODUCTION 
 
 The induced velocity field of a lifting rotor in 
forward flight is fundamental problem in rotorcraft 
aerodynamics, Ref. [1]. The radial and azimuthal 
non-uniformities of the induced velocity produce 
significant unsteady blade air loads that influence 
nearly all important rotorcraft characteristic such as 
rotor lift, drag, and power, rotor trim and control, 
blade structural loads, vehicle vibration, and 
acoustics. Modeling of the induced velocity field is 
inherently difficult because of its mutual 
dependence on the non-uniform rotor blade air load 
distribution. By contrast, modeling of the analogous 
problem for the fixed wing is relatively easy. Prandtl-
Glauert lifting line theory is straight forward to use 
and it can provide reasonable solutions for the fixed 
wing problem. 
 

This paper addresses the influence of induced 
velocity on rotor performance, that is, the lift, drag, 
and power of a lifting rotor in forward flight. 
Elementary momentum theory uses uniform inflow. 
Therefore, it provides an overly simplistic model for 
lifting rotor induced power. More accurate 
representations are available but these rely on 
elaborate discrete vortex filament models or newer 
computational fluid dynamics (CFD) methods.  
 

References 2 and 3 provide an alternative to the 
existing overly simplistic or computationally 
intensive approaches. This method is called Finite-
State Rotor Inflow Theory, or Dynamic Inflow and it 
is developed by Peters and He in Ref. [4]. Dynamic 
Inflow is based on rigorous potential flow theory 
specialized to the lifting rotor in axial or edgewise 
flow.  

The present paper is an extension of Refs. [2], 
[3], therefore, Dynamic Inflow is used throughout 
this present paper. The result is a compact model 
that yields rotor induced power for  
 

1)  the general performance problem of determining 
power for specified rotor controls. 
 

2) the inverse problem of determining the optimum 
controls variables for minimum power.  
 

The analytical nature of the present theory also 
provides important insights into the nature of the 
rotor induced power and its behavior as a function 
of operating conditions and configuration variables.  
 

Interest in rotor induced power derives from the 
ever-present desire to improve rotorcraft 
performance and efficiency, particularly at high 
speed. Harris review paper (Ref. [5]) highlighted the 
widely underappreciated inaccuracy of Glauert’s 
simplified momentum theory at high advance ratios 
by showing that induced power increased 
significantly rather than decreased with advance 
ratio. Subsequently, Ormiston used Dynamic Inflow 
and vortex wake models to reinforce these results 
in Refs. [6], [7]. In these papers, he also showed the 
existence of a singularity in rotor induced power for 
advance ratio near 1.0 for a rotor trimmed to zero 
pitch and roll moments under certain rotor loading 
conditions. 
 

Ormiston later postulated a linear quadratic 
induced power model in terms of control variables 
for rotor angle of attack, collective pitch, and blade 
twist in Ref. [8]. Power constants were deduced as 
a function of advance ratio using computed results 
from Dynamic inflow. The model was used to 
determine the optimum controls for minimum power. 
Limited study of applying higher harmonic blade 
pitch control (HHC) showed additional reduction in 
induced power.  
 

These results provided the impetus to derive the 
analytical rotor power model directly from Dynamic 
Inflow theory. This avoided cumbersome numerical 
identification of the power constants and greatly 
increased flexibility, generality and utility of the 
model, not to mention increased insight, elegance 
and accuracy. The first step was reported by File et 
al in Ref. [2]  
 

1) general performance problem. 
 

2) optimization for minimum power. 
 

It may be noted that the work of Garcia-Duffy et al 
in Ref. [9] was a precursor to Ref. [2].  



Preliminary results were presented in Ref. [2] 
although they did not include the effects of reverse 
flow, inflow feedback, and a finite number of blades.  
In the present study, the important effects of reverse 
flow and inflow feedback are now included although 
the infinite-blade actuator disk model is retained. 
The present refinements now enable confirmation of 
key results identified by Ormiston, specifically the 
induced power singularity. 
 

Other relevant investigations of rotor induced 
power were conducted by Hall, et al in Refs. [10], 
[11]. This work employed a discretized, linear, 
vortex lattice model to determine the optimum 
induced power of finite-bladed rotors. No 
constraints on blade controls or planform geometry 
(a “rubber blade”) were used to determine the 
optimum induced power. They also studied the 
effects of specified conventional and higher 
harmonic blade pitch on induced power. The results 
generally confirmed the findings of Ormiston and 
File.  
 
THEORY 
 
Finite-State Induced-Inflow Theory 
 
 The following development generally follows 
Ref. [2]. According to the Peter/He theory, inflow 
and pressure distribution across the disk can be 
represented as inflow and pressure states, {𝛾} and 
{𝜏̅}, Ref. [4] 
 

(1) 𝑤(�̅�, 𝜓) =   ∑

+∞

𝑟=−∞

∑ 𝜙𝑗
𝑟(�̅�)𝛾𝑗

𝑟 ⋅ 𝑒𝑖𝑟𝜓

+∞

𝑗=|𝑟|+1, |𝑟|+3, ...

  

(2) 𝛥𝑃(�̅�, 𝜓) =   ∑

+∞

𝑚=−∞

∑ �̅�𝑛
𝑚(𝜈)𝜏̅𝑛

𝑚 ⋅ 𝑒𝑖𝑚𝜓

+∞

𝑛=|𝑚|+1, |𝑚|+3, ...

  

 
where 𝜈  is an ellipsoidal coordinate and has 
relationship to non-dimensional radius �̅� as 
 

(3) 𝜈  =  √1 − �̅�2  

 
The total number of states from the rectangular 
method is (2*M+1)*N where M is the maximum 
harmonic used and N is the number of polynomial 
used in the expansion.  
 

The relationship between inflow and pressure 
states can be found in Ref. [4]. This relationship can 
be written in a complex form as below. 

 

(4) {𝛾𝑛
𝑚} = (1 2𝑉⁄ ) ⋅ [�̅�𝑒]{𝜏�̅�

𝑚}  

 

Induced Power Formulation 
 
 Induced power can be computed by multiplying 
inflow and pressure distribution across the rotor disk 
area. 
 

(5) 𝐶𝑃 =
1

𝜋
∫

2𝜋

0

∫
1

𝑟𝑐𝑜

𝑤𝛥𝑃 ⋅ �̅� ⋅ 𝑑�̅�𝑑𝜓  

 
Substituting Eqs. (1) and (2) into Eq. (5) and solving 
for double integral yields the compact induced 
power equation below. 
 

(6) 𝐶𝑃 = 2∑

𝑚

∑{𝜏�̅�
−𝑚}𝑇{𝛾𝑛

𝑚}

𝑛

  

 
Substituting Eq. (4) to (6) yields: 
 

(7) 
𝐶𝑃 = (1 𝑉⁄ )∑

𝑚

∑{𝜏�̅�
−𝑚}𝑇[�̅�𝑒]{𝜏�̅�

𝑚}

𝑛

= (1 𝑉⁄ ){𝜏̅}𝑇[𝑈][�̅�𝑒]{𝜏̅}               

  

 
Where[𝑈] is used to flip the order of {𝜏�̅�

−𝑚} so that 
{𝜏�̅�

−𝑚}𝑇= {𝜏�̅�
𝑚}𝑇[𝑈]. Note that this complex form of 

the equations differs from Ref. [2] by a factor of 2. 
 

Mass flow, 𝑉, is approximately equal to advance 

ratio, 𝜇,  in a high speed forward flight with skew 

angle close to 90°.  [�̅�𝑒] depends only on the skew 
angle. Therefore, Eq. (7) shows that the pressure 
states, {𝜏̅}, are the only required information to 
calculate the induced power. 
 
Rotor Loads in Terms of Pressure States 
 
Common loads in a helicopter are rotor thrust, roll 
moment, and pitch moment. (loads mean the six 
integrated rotor aero forces and moments) These 
loads can be represented with the pressure states, 
{𝜏̅}, as below 
 

(8) 

𝐶𝑇  =       1 𝜋⁄ ∫
2𝜋

0

∫
1

0

𝛥𝑃 ⋅ �̅� ⋅ 𝑑�̅� ⋅ 𝑑𝜓                        

𝐶𝐿  = −1
𝜋⁄ ∫

2𝜋

0

∫
1

0

𝛥𝑃 ⋅ (�̅� ⋅ sin(𝜓)) ⋅ �̅� ⋅ 𝑑�̅� ⋅ 𝑑𝜓

𝐶𝑀  = −1
𝜋⁄ ∫

2𝜋

0

∫
1

0

𝛥𝑃 ⋅ (�̅� ⋅ cos(𝜓))�̅� ⋅ 𝑑�̅� ⋅ 𝑑𝜓

  

 
Substituting pressure difference in Eq. (2) into (8) 
and solving for double integral yields: 
 
(9) {𝐶} = [�̅�]{𝜏̅}  

 



where 
 

(10) [�̅�] =

[
 
 
 
 
 0 2

√3
⁄ 0

𝑖√2
15⁄ 0 −𝑖√2

15⁄

−√2
15⁄ 0 −√2

15⁄
]
 
 
 
 
 

  

 
The analysis above assumes that the lift vector is 
perpendicular to the rotor disk plane rather than to 
the local air velocity vector. This is a reasonable 
assumption because a skew angle close to 90° 
makes the effect of the lift vector tilt negligible. 
 
Blade Pitch Angle in Terms of Rotor-Control 
 
 Either higher-harmonic or radial rotor control 
causes the lift distribution along the blade to be 
altered as a function of azimuth. More control 
means having more ability to tailor the lift distribution 
into the ideal shape. Theoretically, having an infinite 
amount of control can reduce the induced power to 
Glauert’s ideal power. Hall and Hall used infinite 
control (a rubber blade) in Ref. [9] and showed that 
the computed induced power approached the 
Glauert’s ideal power as the number of blades was 
increases.  
 

Typical examples of rotor-control are collective 
and cyclic pitch, higher harmonic control, blade 
twist, variable airfoil geometry and even circulation 
control through local blowing.  

 
 For this paper, we limit the rotor control vector 
{�̅�} to be of the following form. 
 

(11) 

  

𝜃(�̅�, 𝜓)   = ∑

+𝐻

ℎ=−H

∑ �̅�𝑑�̅�𝑑
ℎ𝑒𝑖ℎ𝜓

𝐷

𝑑=0

  

 
In addition, we include rotor shaft angle, 𝛼𝑠 , as a 
control in the theory. Many rotor controls are 
possible with this form. Conventional collective and 
cyclic pitch control (𝐻 = 1, D = 0)  is used as 
minimum control input in this present paper. Higher 
harmonic control results (𝐻 > 1,  𝐷 > 0) will also be 
discussed in the result section. 
 
Blade Element Lift in Terms of Rotor Pitch and 
Inflow  
 

The rotor blade airfoil section airload, or lift per 
unit length, may be expressed in terms of the 
section velocity components UP and UT according to   
conventional blade-element theory. 
 

(12)  𝐿𝑞 = (1 2⁄ )𝜌𝑎𝑐[𝑈𝑇
2 ⋅ 𝜃  −  𝑈𝑃 ⋅ 𝑈𝑇]   

 
where 𝑈𝑇 and 𝑈𝑃 are 
 

(13)  
𝑈𝑇 = 𝛺𝑅(�̅� + 𝜇 ⋅ sin(𝜓))

𝑈𝑃 = 𝛺𝑅(𝜆 + 𝑤(�̅�, 𝜓))    
   

 
Note that for present purposes of rotor performance 
analysis, rotor blade flapping motion is not included. 
In this present paper the lift curve slope, a, has a 
constant value, 6.0, with the assumption that the 
blade does not stall. Equations (12) - (13) show that 
induced inflow, w(�̅�, 𝜓), changes the lift distribution, 
which consequently changes the induced power. 
Previous studies by File neglected the effect of 
inflow feedback in Refs. [2], [3]. This present paper 
shows that inflow feedback should not be neglected. 
 
Pressure Loading in Terms of Rotor Controls 
 

The relationship between pressure and blade 
sectional lift can be founded in Ref. [4]. Changing 
this relationship into a complex form yields: 
 

(14)  {𝜏̅} =
1

2𝜋
∫ 𝐿𝑞𝜙𝑛

𝑚(�̅�) ⋅ 𝑑�̅� ⋅ 𝑒−𝑖𝑚𝜓
1

0
   

 
Substituting Eqs. (12) and (13) into Eq. (14) yields: 
 

(15) {𝜏̅} =
𝜎𝑎

4
⋅

[
 
 
 
 ∫ (�̅� + 𝜇sin(𝜓))

2
[𝜃(�̅�, 𝜓)](𝜙𝑛

𝑚) 𝑑�̅�
1

𝑟𝑐𝑜

 

−∫ ( 𝜆 + 𝜇sin(𝜓))(𝜆 + 𝑤(�̅�, 𝜓))(𝜙𝑛
𝑚) 𝑑�̅�

1

𝑟𝑐𝑜 ]
 
 
 
 

⋅ 𝑒−𝑖𝑚𝜓 

 
Changing sin and cos into their complex forms, 
substituting the pitch angle, induced inflow 
distribution (Eqs. (11) and (1)) into Eq. (15) yields: 
 

(16) {𝜏̅} =
𝜎𝑎

4
⋅ [[�̅�]{�̅�} − [�̅�]{𝛾}]  

 
Where 
 

(17) {�̅�} = {

⋮
�̅�𝑑

ℎ

⋮
𝛼𝑠

}  

 

Where 𝛼𝑠 is the nose up shaft angle and  𝜆 = −𝜇𝛼. 
 
Equation (16) involves pressure states, rotor 
control, and inflow states. Substituting inflow states, 
Eq. (4), into equation above simplify equation into 
pressure states in terms of rotor controls only.  
 



(18) 
{𝜏̅} =

𝜎𝑎

4
⋅ [[𝐼] +

𝜎𝑎

8𝑉
[�̅�][�̅�𝑒]]

−1

[�̅�]{�̅�}

        = [�̅�]{�̅�}                                               

  

 
where 
 

(19)  [�̅�] =
𝜎𝑎

4
⋅ [[𝐼] +

𝜎𝑎

8𝑉
[�̅�][�̅�𝑒]]

−1

[�̅�]   

 
Note that the effect of induced inflow 

feedback, [�̅�], is multiplied by the factor of 
𝜎𝑎

8𝑉
. For a 

given values of lift curve slope, a, and mass flow V, 
solidity 𝜎 is the only parameter that determines the 
magnitude of the inflow feedback.  
 
General Performance Problem – Rotor Power in 
Terms of Specified Controls 
 

Equation (7) expresses power in terms of 
pressure states, 𝜏̅. A few substitutions will yield the 
equation for rotor power in terms of rotor controls. 
 
 Substituting pressure states, 𝜏̅, at Eq. (18) into 
Eq. (9) yields: 
 

(20)  {𝐶} = [�̅�][�̅�]{�̅�}   

 
Where  {𝐶}  is comprised of rotor thrust and 
moments, 
 

(21) {

𝐶𝑇

𝐶𝐿

𝐶𝑀

} = [�̅�][�̅�]{�̅�}  

 
Similarly, substituting pressure states, 𝜏̅, at Eq. (18) 
into Eq. (7) yields: 
 

(22) 𝐶𝑃 =   (1 𝑉⁄ ){�̅�}𝑇[�̅�]𝑇{�̅�}𝑇[𝑈][�̅�𝑒][�̅�]{�̅�}  

 
The expressions for 𝐶𝑇 , 𝐶𝐿 , 𝐶𝑀, and 𝐶𝑃 provide rotor 
induced power for any specified rotor control inputs. 
This is a completely general analytical performance 
theory for all six rotor force and moment 
components, i.e., thrust, H-force, side force, roll and 
pitch moments, and shaft torque. Although Eq. (21) 
includes only three components; the development is 
easily extended to include the other three.  
 
This result is notable in that it properly incorporates 
the complex non-uniform induced velocity 
distribution of the lifting rotor into a general 
analytical formulation for rotor induced power based 
on first-principles. 
 

The induced power expressed analytically in Eq. 
(22) is analogous to Ormiston’s quadratic power 
model of Refs. [8], [12], [13], however it is more 
direct, complete, and accurate than the numerical 
model based on computational results. 
 
Induced Power Model 
 

The quadratic power model of Refs. [8], [12], [13] 
expressed the induced power in terms of the most 
common basic rotor control variables of collective 
pitch, rotor angle of attack, and rotor blade linear 
twist. Six coefficients of this power model were 
termed power constants. They were obtained via 
parameter identification based on a database of 
numerical rotor power computations for a range of 
advance ratio. Blade element theory, linear airfoil 
aerodynamics, and Dynamic Inflow were used in 
these computations. Zero pitch and roll moments 
rotor trim was achieved with appropriate cyclic pitch. 
 

Such a quadratic power model provides a simple 
means to quickly calculate rotor induced power as a 
function of advance ratio for arbitrary rotor controls. 
The results produced by this model are much more 
accurate compared to those calculated from the 
classical Glauert momentum theory based on 
uniform inflow. 
 

The present analytical model may also be used 
to provide the power constants for the quadratic 
power model without the inconvenience and 
numerical inaccuracies noted in Refs. [8], [12], [13]. 
The following development will illustrate this 
process and provide typical results.  
 

Specific conditions are chosen to study the 
general performance problem. Conventional 
collective and cyclic pitch are chosen as the three 
control variables, and edgewise flow was chosen as 
the fight condition. Edgewise flow condition implies 
small nose up shaft angle,𝛼𝑠. From these conditions 
six power constants can be extracted.  
 
 Equation (22) can be rewritten as  
 

(23) 
𝐶𝑃

(𝜎𝑎)2
=   (1 𝑉⁄ ){�̅�}𝑇[�̃�]𝑇{�̅�}𝑇[𝑈][�̅�𝑒][�̃�]{�̅�} 

 

 
Where 
 

(24) [�̃�] =
1

𝜎𝑎
[�̅�]  

 
Expanding Eq. (23) yields 
 



(25) 

𝐶𝑃

(𝜎𝑎)2
    = (1 𝜇⁄ ) ⋅                                                          

(
𝐾𝜃0

2 ⋅ (𝜃0)
2 + 𝐾𝜃𝑐

2 ⋅ (𝜃𝑐)
2 + 𝐾𝜃𝑠

2 ⋅ (𝜃𝑠)
2                       

+𝐾𝜃0𝜃𝑐
⋅ (𝜃0)(𝜃𝑐) + 𝐾𝜃𝑐𝜃𝑠

⋅ (𝜃𝑐)(𝜃𝑠) + 𝐾𝜃0𝜃𝑠
⋅ (𝜃0)(𝜃𝑠)

)

 

 
𝐾𝜃0

2 ,   𝐾𝜃𝑐
2 , 𝐾𝜃𝑠

2 , 𝐾𝜃0𝜃𝑐
, 𝐾𝜃𝑐𝜃𝑠

,  and 𝐾𝜃0𝜃𝑠
 are the 

six power constants, and they are plotted versus 
advance ratio, 𝜇, in Figs. 1 through 6. No root cut-
out is used. The maximum harmonic number, M=3, 
and the number of polynomials, N=100, were used 
for a total of 700 states. The magnitude of inflow 
feedback is controlled by changes in the solidity 
value.  

 
Note that these results cannot be compared 

directly with results in Refs.  [8], [12], and [13] since 
they are for different conditions.  In the present 
paper, the constants are partial derivatives with 
respect to the control variables: 𝜃0, 𝜃𝑠  and 𝜃𝑐 .  In 
Ref. [8], they are total derivatives with respect to 
collective pitch, shaft angle of attack, and blade twist 
under the constraint of a trimmed condition.  For 
example, a variation in 𝜃0  in Ref. [8] implies 
corresponding variations in cyclic pitch to achieve 
the trim condition. 

 

 
Figure 1. 𝐾𝜃0

2, M=3, N=100 

 

 
Figure 2.  𝐾𝜃𝑐

2, M=3, N=100. 

 
Figure 3. 𝐾𝜃𝑠

2, M=3, N=100. 

 

 
Figure 4.   𝐾𝜃0𝜃𝑐

, M=3, N=100. 

 

 
Figure 5. 𝐾𝜃𝑐𝜃𝑠

, M=3, N=100. 

 

 
Figure 6. 𝐾𝜃0𝜃𝑠

, M=3, N=100. 



Optimum Performance Problem 
  

Having presented the theory for the general 
performance problem, it is of interest to address the 
second problem discussed in the introduction — the 
inverse problem of determining the optimum control 
variables for minimum power.  

 
 Optimum performance for a helicopter rotor is 
typically defined for a specified trim condition; in the 
present work this generally means a given thrust 
with zero pitching and rolling moment values. These 
conditions are used as constraints for the induced 
power optimization. 
 
 The optimization procedure starts with definition 
of a functional 𝐹(𝜏̅), in terms of the induced power 

coefficient, CP, with the dot product of the loading 

constraints, {𝐶}, with Lagrange multipliers, {𝛬̅}.  
 

(26) 𝐹(𝜏̅) = 𝐶𝑃 − {𝐶}𝑇{𝛬̅}  

 
Substituting Eqs. (7) and (9) into Eq. (19) yields: 

 

(27) 𝐹(𝜏̅) =
1

𝑉
{𝜏̅}𝑇[𝑈][�̅�𝑒]{𝜏̅} − {𝜏̅}𝑇{�̅�}𝑇{𝛬̅}  

 
Substituting Eq. (19) into (27) yields: 

 

(28) 
𝐹(�̅�) =

1

𝑉
{�̅�}𝑇[�̅�]𝑇[𝑈][�̅�𝑒][�̅�]{�̅�}

−{�̅�}𝑇[�̅�]𝑇{�̅�}𝑇{𝛬̅}
  

 
Taking the variation of 𝐹(�̅�) and setting it equal to 
zero will give the optimality condition for CP. 
 

(29)   
𝛿𝐹(�̅�) =

1

𝑉
{𝛿�̅�}𝑇[�̅�]𝑇[𝑈][�̅�𝑒]𝑠𝑦𝑚[�̅�]{�̅�}

−{𝛿�̅�}𝑇[�̅�]𝑇{�̅�}𝑇{𝛬̅}
  

 

where [�̅�𝑒]𝑠𝑦𝑚 is the symmetric part of [�̅�𝑒]. 

 
Optimum controls can be found from the above 
equation and they are: 
 

(30) {�̅�}  =  𝑉([�̅�]𝑇[𝑈][�̅�𝑒]𝑠𝑦𝑚[�̅�])
−1

[�̅�]𝑇[�̅�]𝑇{𝛬̅} 

 

Solving for the Lagrange multipliers, {𝛬̅}, yields: 
 

(31) 
{�̅�}  =                                                                          

(1 𝑉⁄ ) ([�̅�][�̅�]([�̅�]𝑇[𝑈][�̅�𝑒]𝑠𝑦𝑚[�̅�])
−1

[�̅�]𝑇[�̅�]𝑇)
−1

{𝐶}           

 
Equations (31), (30), (18), and (7) yield: 
 

(32) 𝐶𝑃 = (1 𝑉⁄ ){𝐶}𝑇[�̅�]−1{𝐶}  

 
where 
 

(33) [�̅�] = ([�̅�][�̅�]([�̅�]𝑇[𝑈][�̅�𝑒]𝑠𝑦𝑚[�̅�])
−1

[�̅�]𝑇[�̅�]𝑇) 

  
Normalization of the Power Equation 
 

Since induced power is the power loss 
associated with the lift produced by the rotor, it is 
appropriate to normalize the induced power by the 
rotor thrust. This applies to the results for both the 
general rotor power problem, Eq. (22), as well as 
the optimum power problem, Eq. (32). For the 
optimum power problem, dividing both sides of Eq. 

(32) by 𝐶𝑇
2 yields: 

 

(34) 

(
𝐶𝑃

𝐶𝑇
2) = (1 𝑉⁄ ) (

{𝐶}𝑇

𝐶𝑇
⁄ ) [�̅�]−1 (

{𝐶}
𝐶𝑇

⁄ )

(
𝐶𝑃

𝐶𝑇
2) = (1 𝑉⁄ ){𝐶̅}𝑇[�̅�]−1{𝐶̅}                        

  

 
Eq. (34) can be compared to the Glauert ideal 
induced power which is given by 
  

(35)   (
𝐶𝑃

𝐶𝑇
2)

𝑖𝑑𝑒𝑎𝑙
=

1

2𝜇
  

 
Equation (35) is the lowest possible induced power 
for high-speed forward flight of the lifting rotor. 
Therefore, calculated induced power should never 
be lower than the value of Eq. (35). 
 
RESULTS WITH CLASICAL CONVENTIONAL 
CONTROL 
 

All of the results presented in this section use the 
following rotor blade configuration and flight 
conditions: infinite number of rectangular, untwisted 
blades, with conventional collective and cyclic pitch 
control and linear airfoil section lift-curve slope. The 
rotor blades are considered to be rigid without 
flapping hinges so that blade flapping motion is not 
included. Rotor angle of attack is zero and the lift is 
produced by collective pitch. The cyclic pitch is used 
to trim the rotor to zero resultant pitch and roll 
moment. A propulsive force trim constraint is not 
applied. 

 
All plot titles include capital letters M, N, H, and 

D. M is maximum harmonic number and N is 
number of polynomials used. Both M and N are 
related to the convergence of the solution. Higher 
combinations of M and N produce more converged 



solution. Solutions with M=3 and N=100 (700 
states) can be considered as “fully converged.”  

 
H is the maximum harmonic of blade pitch 

control and D is the maximum order of blade radial 
twist. In this section H=1 and D=0 are used. D=0 
implies that the blade is untwisted. 

 
Without Reverse Flow 
 

To begin the analysis, we repeat the results of 
Refs. [2], [3], (with no reverse flow) but with more 
harmonics in the dynamic wake model than were 
used by File. Due to computer limitations and the 
presence of ill-conditioned matrices, File was only 
able to use eight harmonics in his analysis. Here, by 
using more efficient algorithms and by introducing 
conditioning enhancement, we have been able to 
obtain a fully converged solution.   

 
Figure 7. Fully converged induced power without reverse flow, M=3. 

 

Figure 7 shows the comparison between the results 
of File and the present fully converged results. Even 
fully converged solutions do not show the singularity 
in power with no reverse flow. In other words, the 
power requirement does not go to infinity at the 
critical advance ratio. 
 
 Next, with no reverse flow, we compute induced 
power with different root cut-out (rco) values. 

 
Figure 8. Effect of root cut-out without reverse flow, M=3, N=100. 

Figure 8 shows that, as rco increases from zero to 
0.3, the overall power consumption decreases. The 
reason behind this continuous reduction in power is 
related to how inflow and pressure are distributed 
throughout the rotor disk. For rco ≥ 0.4 the power 
begins to increase. 

 
Figure 9. Pressure distribution across the disk with rco=0.1, advance 

ratio=0.9, M=3, N=100. 
 

The pressure peak near the root region is shown in 
Fig. 9. The condition of small root cut-out and no 
reverse flow causes the pressure to be 
concentrated in a small region. High power 
consumption is caused by this small region because 
power is product of inflow and pressure distribution.  
 

 
Figure 10. Pressure distribution across the disk with rco=0.4, advance 

ratio=0.9, M=3, N=100. 
 

Applying moderate root cut-out removes this small 
region, causing the loads and inflow distribution to 
be spread out more evenly throughout the disk. 
Figure 10 shows how applying root cut-out value of 
0.4 spreads out the pressure distribution compared 
to those in Fig. 9. 
 
 
 
 
 
 



Effect of Reverse Flow 
  
 Figure 11 shows the induced power behavior 
when reverse flow is added to the model.  

Figure 11. Effect of root-cutout with reverse flow, no inflow feedback, 
M=3, N=100. 

 

The induced power becomes infinite near the critical 
advance ratio in the presence of reverse flow. This 
plot shows that direct analytical method can 
reproduce the singular behavior of the rotor power 
predicted by Ormiston and also confirmed by Hall 
and Giovanetti in Ref. [11]. Note that rotor angle of 
attack is zero and the rotor lift is produced by rotor 
collective pitch. Cyclic pitch is imposed to satisfy the 
zero hub moment trim condition. Advancing blade 
pitch decreases while retreating blade pitch 
increases. 
 

As a result of this trim condition, inboard portion 
of the blade in the reverse flow region produces 
negative lift while the rest of the rotor produces 
positive lift. This highly non-uniform rotor lift 
distribution causes induced power to increase. In 
fact, at the critical advance ratio, the negative lift in 
the reverse flow region completely cancels the 
positive lift. The net lift response due to collective 
pitch control for trimmed hub moments is zero. In 
other words, at the critical advance ratio, the rotor is 
unable to trim to a nonzero rotor lift with collective 
pitch. However, the induced power remains positive 

and therefore the normalized induced power, 
𝐶𝑃

𝐶𝑇
2 , 

becomes infinite.  
 
 Figure 11 also shows that changing the root cut-
out shifts the critical advance ratio and the point of 
singularity. This makes physical sense in that, as 
root cut-out is increased, the region of reverse flow 
is diminished; and thus the critical advance ratio 
shifts to higher values with increasing root cut-out.  
 
 

Effect of Inflow Feedback and Reverse Flow 
 

The effect of inflow feedback is added to that of 
reverse flow in Fig. 12. The magnitude of inflow 
feedback is controlled by changes in the solidity.  

Figure 12. Effect of inflow feedback with reverse flow, no root cutout, 
M=3, N=100. 

 

The overall induced power decreases with 
increased effect of inflow feedback (i.e., with 
increased solidity). The region of infinite power 
narrows when the solidity is increased. Inflow 
feedback forces the lift distribution into more ideal 
shape so that the induced power decreases.  
 
RESULTS WITH HIGHER HARMONIC CONTROL 
  
 This section focuses on the effect of higher 
harmonic control. (𝐻 ≥ 1  and  𝐷 ≥ 0) Other than 
that, analysis in this section uses same conditions 
as for the results for conventional control shown 
earlier. 
 
Without Reverse Flow 
 

Figure 13. Effect of HHC control without reverse flow, no root cutout, 
N=100. 



File showed that the power decreases with HHC 
control in Refs. [2], [3]. However, as seen from Fig. 
7, his results were not fully converged. Fully 
converged HHC solutions are presented in Fig. 13. 
Application of more control degrees of freedom 
reduces the induced power, and it approaches the 
Glauert minimum.  
 
Effect of Reverse Flow 
 

Figure 14. Effect of HHC control with reverse flow, no root cutout, N=100. 
 

Figure 14 shows that HHC control removes the 
infinite power peak. Increasing H from 1 to 2 is 
enough to remove the singularity. Even with the 
presence of the reverse flow, using H=4 and D=4 
brings the power curve down almost to the Glauert 
minimum.  
 
Effect of Inflow Feedback and Reverse Flow 
 

Figure 15. Effect of HHC control with reverse flow and inflow feedback, 
no root cutout, solidity=0.15, N=10. 

 

Inflow feedback causes power peaks at Fig. 15 to 
be shorter and narrower compared to those at Fig. 
14. Therefore, we can conclude that inflow feedback 
always reduces the induced power requirement. No 

matter how many controls are used, inflow feedback 
will not increase the power consumption. 
 
CONCLUSIONS 
 
1. Finite state Dynamic Inflow provides a rigorous 
analytical model for lifting rotor performance in 
forward flight. The model is extended to include the 
effects of reverse flow and inflow feedback. 
 
2. The model provides general performance 
characteristics for specified control variables as well 
as optimum performance subject to specified 
constraints. 
 
3. The model also yields power constants for a 
quadratic power model that may be used to quickly 
calculate induced power as a function of advance 
ratio for specified rotor controls. 
 
4. The present direct analytical method qualitatively 
reproduces the results found by Ormiston from 
numerical computation, including the singularity in 
normalized induced power. 
 
5. Full solution convergence was achieved with 
more efficient algorithms and better conditioning 
enhancement than used by previous investigators. 
 
6. With no reverse flow, moderate root cut-out 
reduces the induced power. 
 
7. Reverse flow creates an infinite peak in 
normalized induced power due to the inability of a 
rotor at zero angle of attack to generate lift from 
collective pitch when trimmed to zero pitch and roll 
moments. 
 
8. When the effect of reverse flow is added, root cut-
out shifts the singularity to a higher 𝜇. 
 
9. The effect of inflow feedback reduces the induced 
power and narrows the region of infinite power.  
 
10. Using higher harmonic controls decreases 
induced power in all three conditions: without 
reverse flow, with reverse flow, with inflow feedback 
and reverse flow. With a sufficient number of control 
degrees of freedom, the induced power approaches 
Glauert’s minimum ideal power. 
 
11. Higher harmonic control removes the infinite 
power peak caused by the reverse flow. 
 



12. The reduction of induced power with inflow 
feedback is independent of the number of control 
used.  
 
 
ACKNOWLEDGEMENTS 
 
 This work was sponsored by the GT/WU RCOE 
Program through an Army Contract, Dr. Mahendra 
Bhagwat Technical Monitor.  
 
 
REFERENCES 

1. Glauert, H., “A General Theory of the Autogyro,” 
R&M No. 1111, Aeronautical Research Council of 
Great Britain, March 1927. 

2. File, Chad, Peters, David A., and Ormiston, 
Robert A., "Optimum Rotor Performance with 
Realistic Constraints by Finite-State Induced Flow 
Methods," Proceedings of the 67th Annual National 
Forum of the American Helicopter Society, Virginia 
Beach, Virginia, May 3-5, 2011. 

3. File, Chad L, Optimization of Induced-Power from 
Dynamic Inflow Theory, Ph.D. Dissertation, 
Washington University in St. Louis, May 2013. 

4.  He, Cheng Jian, Development and Applications 
of a Generalized Dynamic Wake Theory for Lifting 
Rotors, Ph.D. Dissertation, Georgia Institute of 
Technology, August 1989. 

5. Harris, Franklin D., “Rotary Wing Aerodynamics 
Historical Perspectives and Important Issues,” 
paper presented at the American Helicopter Society 
Southwest Region National Specialists’ Meeting on 
Aerodynamics and Aeroacoustics, Arlington, TX, 
February 25-27, 1987. 

6. Ormiston, Robert A., “Helicopter Rotor Induced 
Power,” Proceedings of the AHS International 60th 
Annual Forum and Technology Display, Baltimore, 
MD, June 8-10, 2004. 

7. Ormiston, Robert A., “Further Investigations of 
Helicopter Rotor Induced Power,” Proceedings of 
the AHS International 61st Annual Forum and 
Technology Display, Grapevine, Texas, June 1-3, 
2005. 

8. Ormiston, Robert A., “A New Formulation for 
Lifting Rotor Performance Including Comparison 

with Full-Scale Data,” Proceedings of the AHS 
International 64st Annual Forum and Technology 
Display, Montreal, Quebec, Canada, April 29 - May 
1, 2008. 

9. Garcia-Duffy, Cristina, Peters, David A., and 
Ormiston, Robert A., “Optimum Rotor Performance 
in Skewed Flow Based on Actuator-Disk Theory,” 
Proceedings of the 27th AIAA Applied Aerodynamics 
Conference, San Antonio, TX, June 22-25, 2009, 
AIAA- 2009-3517. 

10. Hall, Kenneth C. and Hall, Steven R., “A 
Variational Method for Computing the Optimal 
Aerodynamic Performance of Conventional and 
Compound Helicopters,” Journal of the American 
Helicopter Society, Vol. 55, No. 4, October, 2010, 
pp. 042006-1 through 042006-16. 

11. Hall, Kenneth C. and Giovanetti, Eli B., 
“Minimum Power Requirements and Optimal Rotor 
Design for Conventional and Compound 
Helicopters Using Higher Harmonic Control,” 
Proceedings of the 69th Annual National Forum of 
the American Helicopter Society, Phoenix, Arizona, 
May 21–23, 2013. 

12. Ormiston, Robert A., “An Analytical Formulation 
for Lifting Rotor Induced Power, Proceedings of the 
AHS International 65th Annual Forum and 
Technology Display, Grapevine, TX, May 27-29, 
2009. 

13. Ormiston, Robert A., “Applications of the 
Induced Power Model and Performance of 
Conventional and Advanced Rotorcraft,” 
Proceedings of the American Helicopter Society 
Aeromechanics Specialists’ Conference, San 
Francisco, CA, January 20-22, 2010. 

 
 

 
 
 
 

 


